• Title/Summary/Keyword: $^{68}Ga$-PSMA

Search Result 7, Processing Time 0.02 seconds

A Comparative Study of Production of [68Ga]PSMA-11 with or without Cassette Type Modules (비 카세트 방식과 카세트 방식을 이용한 [68Ga]PSMA-11의 자동 합성 방법 비교)

  • Hyun-Sik, Park;Byeong-Min, Jo;Hyun-Ho, An;Hong-Jin, Lee;Jin-Hyeong, Lee;Gyeong-Jae, Lee;Byung-Chul, Lee;Won-Woo, Lee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.26 no.2
    • /
    • pp.15-19
    • /
    • 2022
  • Purpose [68Ga]PSMA-11 is needed the high reproducibility, excellent radiochemical yield and purity. In term of radiation safety, the radiation exposure of operator for its production also should be considered. In this work, we performed a comparative study for the fully automated synthesis of [68Ga]PSMA-11 between non-cassette type and cassette type. Materials and Methods Two different type of modules (TRACERlab FX N pro for non-cassette type and BIKBox for cassette type) were used for the automated production of [68Ga]PSMA-11. According to the previously identified elution profile, Only 2.5 ml with high radioactivity was used for the reaction. After adjusting the pH of the reaction solution with HEPES buffer solution, the precursor was added and reacted with at 95 ℃ for 15 minutes. The reaction mixture was separated and purified using a C18 light cartridge. The product was eluted with 50% EtOH/saline solution and diluted with saline. It was completed by sterilizing filter. In the non-cassette type, the aforementioned process must be prepared directly. However, in the cassette method, synthesis was possible simply by installing a kit that was already completed. Results Both total [68Ga]PSMA-11 production time were 25±3(non-cassette type) and 23±3 minutes(cassette type). The radiochemical yield of the non-cassette type(65.5±5.7%) was higher than that of the cassette type(61.6±4.8%) after sterilization filter. The non-cassette type took about 120 minutes of preparation time before synthesis due to washing of synthesizer and reagent preparation. However, since the cassette type does not require washing and reagent preparation, it took about 20 minutes to prepare before synthesis. Both type of synthesizer had a radiochemical high purity(>99%). Conclusion The non-cassette type production of [68Ga]PSMA-11 showed higher radiochemical yield and lower cost than the cassette type. However, The cassette type has an advantage in terms of preparation time, convenience, and equipment maintenance.

PSMA Inhibitors for Nuclear Imaging and Radiotherapy of Prostate Cancer

  • Sajid Mushtaq;Tugsuu Uyanga;Park Ji Ae;Jung Young Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.9 no.1
    • /
    • pp.23-33
    • /
    • 2023
  • Prostate cancer ranks as the world's second most frequently diagnosed cancer among men, and is responsible for the fifth highest number of cancer-related deaths in this population. The development of effective diagnostic and therapeutic approaches for prostate cancer remains a major challenge in the field of oncology. Over the past few years, the prostate-specific membrane antigen (PSMA) has raised as a hopeful tracer for the diagnosis and treatment of prostate cancer.Various radioisotopes, such as 131I, 99mTc, 68Ga, and 177Lu, have been used to label PSMA analogues, with varying degrees of success. Among these, 68Ga-PSMA-11 and 177Lu-PSMA-617 have emerged as the most promising radioligands for clinical use. Recently, researchers have been exploring the use of other radioisotopes, such as 211At, 89Zr, 64/67Cu, and 203/212Pb, for the labeling of PSMA-targeted radioligands. These radioisotopes have unique properties that may offer advantages over existing radioligands, such as longer half-lives, higher specific activities, and different emission profiles. Efforts are currently underway to develop these radiopharmaceuticals and make them more widely available for clinical use. These exciting developments highlight the potential of PSMA-targeted radioligands for the diagnosis and treatment of prostate cancer, and provided significant implications for the management of this disease in the future. The current study aims to provide a comprehensive summary of the latest research and clinical applications of radiolabeled PSMA inhibitors for diagnoses and therapy of prostate cancer, emphasizing the exciting developments in the field and their potential impact on clinical practice.

Study of 68Ga Labelled PET/CT Scan Parameters Optimization (68Ga 표지 PET/CT 검사의 최적화된 매개변수에 대한 연구)

  • In Suk Kwak;Hyuk Lee;Si Hwal Kim;Seung Cheol Moon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.27 no.2
    • /
    • pp.111-127
    • /
    • 2023
  • Purpose: Gallium-68 (68Ga) is increasingly used in nuclear medicine imaging for various conditions such as lymphoma and neuroendocrine tumors by labeling tracers like Prostate Specific Membrane Antigen (PSMA) and DOTA-TOC. However, compared to Fluorine-18 (18F) used in conventional nuclear medicine imaging, 68Ga has lower spatial resolution and relatively higher Signal to Background Ratio (SBR). Therefore, this study aimed to investigate the optimized parameters and reconstruction methods for PET/CT imaging using the 68Ga radiotracer through model-based image evaluation. Materials and Methods: Based on clinical images of 68Ga-PSMA PET/CT, a NEMA/IEC 2008 PET phantom model was prepared with a Hot vs Background (H/B) ratio of 10:1. Images were acquired for 9 minutes in list mode using DMIDR (GE, Milwaukee WI, USA). Subsequently, reconstructions were performed for 1 to 8 minutes using OS-EM (Ordered Subset Expectation Maximization) + TOF (Time of Flight) + Sharp IR (VPFX-S), and BSREM (Block Sequential Regularized Expectation Maximization) + TOF + Sharp IR (QCFX-S-400), followed by comparative evaluation. Based on the previous experimental results, images were reconstructed for BSREM + TOF + Sharp IR / 2 minutes (QCFX-S-2min) with varying β-strength values from 100 to 700. The image quality was evaluated using AMIDE (freeware, Ver.1.0.1) and Advanced Workstation (GE, USA). Results: Images reconstructed with QCFX-S-400 showed relatively higher values for SNR (Signal to Noise Ratio), CNR (Contrast to Noise Ratio), count, RC (Recovery Coefficient), and SUV (Standardized Uptake Value) compared to VPFX-S. SNR, CNR, and SUV exhibited the highest values at 2 minutes/bed acquisition time. RC showed the highest values for a 10 mm sphere at 2 minutes/bed acquisition time. For small spheres of 10 mm and 13 mm, an inverse relationship between β-strength increase and count was observed. SNR and CNR peaked at β-strength 400 and then decreased, while SUV and RC exhibited a normal distribution based on sphere size for β-strength values of 400 and above. Conclusion: Based on the experiments, PET/CT imaging using the 68Ga radiotracer yielded the most favorable quantitative and qualitative results with a 2 minutes/bed acquisition time and BSREM reconstruction, particularly when applying β-strength 400. The application of BSREM can enhance accurate quantification and image quality in 68Ga PET/CT imaging, and an optimization process tailored to each institution's imaging objectives appears necessary.

Phase I Clinical Trial of Prostate-Specific Membrane Antigen-Targeting 68Ga-NGUL PET/CT in Healthy Volunteers and Patients with Prostate Cancer

  • Minseok Suh;Hyun Gee Ryoo;Keon Wook Kang;Jae Min Jeong;Chang Wook Jeong;Cheol Kwak;Gi Jeong Cheon
    • Korean Journal of Radiology
    • /
    • v.23 no.9
    • /
    • pp.911-920
    • /
    • 2022
  • Objective: 68Ga-NGUL is a novel prostate-specific membrane antigen (PSMA)-targeting tracer based on Glu-Urea-Lys derivatives conjugated to a 1,4,7-triazacyclononane-N,N',N''-triacetic acid (NOTA) chelator via a thiourea-type short linker. This phase I clinical trial of 68Ga-NGUL was conducted to evaluate the safety and radiation dosimetry of 68Ga-NGUL in healthy volunteers and the lesion detection rate of 68Ga-NGUL in patients with prostate cancer. Materials and Methods: We designed a prospective, open-label, single-arm clinical trial with two cohorts comprising six healthy adult men and six patients with metastatic prostate cancer. Safety and blood test-based toxicities were monitored throughout the study. PET/CT scans were acquired at multiple time points after administering 68Ga-NGUL (2 MBq/kg; 96-165 MBq). In healthy adults, absorbed organ doses and effective doses were calculated using the OLINDA/EXM software. In patients with prostate cancer, the rates of detecting suspicious lesions by 68Ga-NGUL PET/CT and conventional imaging (CT and bone scintigraphy) during the screening period, within one month after recruitment, were compared. Results: All 12 participants (six healthy adults aged 31-32 years and six prostate cancer patients aged 57-81 years) completed the clinical trial. No drug-related adverse events were observed. In the healthy adult group, 68Ga-NGUL was rapidly distributed, with the highest uptake in the kidneys. The median effective dose coefficient was calculated as 0.025 mSv/MBq, and cumulative activity in the bladder had the highest contribution. In patients with metastatic prostate cancer, 229 suspicious lesions were detected using either 68Ga-NGUL PET/CT or conventional imaging. Among them, 68Ga-NGUL PET/CT detected 199 (86.9%) lesions and CT or bone scintigraphy detected 114 (49.8%) lesions. Conclusion: 68Ga-NGUL can be safely applied clinically and has shown a higher detection rate for the localization of metastatic lesions in prostate cancer than conventional imaging. Therefore, 68Ga-NGUL is a valuable option for prostate cancer imaging.

The Application of Radiolabeled Targeted Molecular Probes for the Diagnosis and Treatment of Prostate Cancer

  • Luyi Cheng;TianshuoYang;Jun Zhang;Feng Gao;Lingyun Yang;Weijing Tao
    • Korean Journal of Radiology
    • /
    • v.24 no.6
    • /
    • pp.574-589
    • /
    • 2023
  • Radiopharmaceuticals targeting prostate-specific membrane antigens (PSMA) are essential for the diagnosis, evaluation, and treatment of prostate cancer (PCa), particularly metastatic castration-resistant PCa, for which conventional treatment is ineffective. These molecular probes include [68Ga]PSMA, [18F]PSMA, [Al18F]PSMA, [99mTc]PSMA, and [89Zr]PSMA, which are widely used for diagnosis, and [177Lu]PSMA and [225Ac]PSMA, which are used for treatment. There are also new types of radiopharmaceuticals. Due to the differentiation and heterogeneity of tumor cells, a subtype of PCa with an extremely poor prognosis, referred to as neuroendocrine prostate cancer (NEPC), has emerged, and its diagnosis and treatment present great challenges. To improve the detection rate of NEPC and prolong patient survival, many researchers have investigated the use of relevant radiopharmaceuticals as targeted molecular probes for the detection and treatment of NEPC lesions, including DOTA-TOC and DOTA-TATE for somatostatin receptors, 4A06 for CUB domain-containing protein 1, and FDG. This review focused on the specific molecular targets and various radionuclides that have been developed for PCa in recent years, including those mentioned above and several others, and aimed to provide valuable up-to-date information and research ideas for future studies.

Synthesis and biological evaluation of diagnostic reagent for prostate cancer using copper-64 radioisotope

  • Ahn, Heesu;Kim, Mi Hyun;Han, Sang Jin;Woo, Sang Keun;Kim, Jung Young;Lee, Kyu Chul;Lim, Il Han;Lee, Yong Jin
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.2
    • /
    • pp.65-72
    • /
    • 2018
  • Prostate specific membrane antigen (PSMA) is a cell surface membrane protein, which is overexpressed in most prostate cancer. Recently, PET imaging with $[^{68}Ga]$PSMA-HBED-CC has been widely used for the diagnosis of recurrent prostate cancer and the studies on the diagnostic potential of $^{64}Cu$-labeled PSMA ligands reported actively. In this study, we monitored with biological evaluation in vivo and PET imaging of $^{64}Cu$-labeled PSMA ligand ($[^{64}Cu]$PSMA-617). The radiolabelling efficiency and stability of $[^{64}Cu]$PSMA-617 were confirmed by radio-thin layer chromatography. The radiolabeling efficiency of $[^{64}Cu]$PSMA-617 showed over 95%, and stabilities of intact remained over 98% in both human and mouse serum for 48 h. In normal male mice, in vivo uptake of $[^{64}Cu]$PSMA-617 in several organs was measured at 2, 4, 6, 24, 48 h after injection. Rapid blood clearance was observed for $[^{64}Cu]$PSMA-617. The high uptake was observed in the lung, liver, intestines and kidneys at 2 h postinjection, but was low in the other organs (1-2 %ID/g) at 4 h. The dynamic PET/CT images of 22RV1 tumor-bearing nude mice were acquired during 60 min and additionally acquired 24 h and 48 h after injection. In dynamic PET images, $[^{64}Cu]$PSMA-617 uptake ratio in tumors versus muscle was increased as time elaplsed until 60 minutes and remained in tumors at 48 h. In these results, the PET/CT imaging using $[^{64}Cu]$PSMA-617 in prostate cancer is expected to be useful for the diagnosis and treatment of prostate cancer patients.