• Title/Summary/Keyword: $^{31}p$ NMR

Search Result 123, Processing Time 0.021 seconds

Solid-State $^{31}P$ NMR Chemical Shielding Tensors in Binuclear Platinum Diphosphite Complexes

  • 우애자;Leslie G. Butler
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.457-460
    • /
    • 1996
  • The principal elements of the 31P NMR chemical shielding tensors have been determined for three binuclear platinum diphosphite complexes, K4[Pt2(P2O5H2)4·2H2O ("Pt2"), K4[Pt2(P2O5H2)4Cl2]·2H2O ("Pt2Cl2"), and K4[Pt2(P2O5H2)4Br2]·2H2O ("Pt2Br2"), by using a Herzfeld-Berger graphical method for interpreting the 31P MAS spectrum. The orientations of 31P chemical shielding tensor relative to the molecular axis system are partially assigned with combination of the longitudinal relaxation study of HPO32- and the reference to known tensor orientations of related sites; the most chemical shielding component, δ33, is directed along the P-Pt bond axis. A discussion is given in which the experimental principal elements of the 31P chemical shielding tensor are related with the Pt-Pt bond distances in binuclear platinum diphosphite complexes.

Localized In Vivo $^{31}P$ NMR Studies on Rabbit Skeletal Muscle Tissue from Premortem to Postmortem Period

  • Choe, Bo-Young;Kim, Sung-Eun;Lee, Hyoung-Koo;Suh, Tae-Suk;Lee, Heung-Kyu;Shinn, Kyung-Sub
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.3 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • Localized in vivo 31P NMR spectroscopy was applied to evaluate the postmortem catabolism of high energy phosphates in rabbit skeletal muscle tissue. In the premortem processes all of the important high energy phosphate metabolites were characterized, and particularly phosphocreatine (PCr) resonance signal was the strongest. In the immediate phases of the postmortem processes the signal intensities of PCr, phosphomonoesters (PME), phosphodiesters(PDE), $\alpha$-, $\beta$- and ${\gamma}$-adenosine triphosphate (ATP) resonance began to decrease while the signal intensity of inorganic phosphorus (Pi) resonance began to increase. The present study suggests that localized in vivo 31P NMR spectroscopy may provide more precise biochemical information of the early postmortem period based on the metabolic alterations of phosphate. The unique ability of localized in vivo 31P NMR spectroscopy to offer noninvasive information about tissue biochemistry in animals as well as human may have an impact on thanatochronology and medicolegal science.

  • PDF

Per-deuteration and NMR experiments for the backbone assignment of 62 kDa protein, Hsp31

  • Kim, Jihong;Choi, Dongwook;Park, Chankyu;Ryu, Kyoung-Seok
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.3
    • /
    • pp.112-118
    • /
    • 2015
  • Hsp31 protein is one of the members of DJ-1 superfamily proteins and has a dimeric structure of which molecular weight (MW) is 62 kDa. The mutation of DJ-1 is closely related to early onset of Parkinson's disease. Hsp31 displays $Zn^{+2}$-binding activity and was first reported to be a holding chaperone in E. coli. Its additional glyoxalase III active has recently been characterized. Moreover, an incubation at $60^{\circ}C$ induces Hsp31 protein to form a high MW oligomer (HMW) in vitro, which accomplishes an elevated holding chaperone activity. The NMR technique is elegant method to probe any local or global structural change of a protein in responses to environmental stresses (heat, pH, and metal). Although the presence of the backbone chemical shifts (bbCSs) is a prerequisite for detailed NMR analyses of the structural changes, general HSQC-based triple resonance experiments could not be used for 62 kDa Hsp31 protein. Here, we prepared the per-deuterated Hsp31 and performed the TROSY-based triple resonance experiments for the bbCSs assignment. Here, detailed processes of per-deuteration and the NMR experiments are described for other similar NMR approaches.

Modulation of the Specific Interaction of Cardiolipin with Cytochrome c by Zwitterionic Phospholipids in Binary Mixed Bilayers: A $^2H$-and $^{31}P$-NMR Study

  • Kim, Andre;Jeong, In-Chul;Shim, Yoon-Bo;Kang, Shin-Won;Park, Jang-Su
    • BMB Reports
    • /
    • v.34 no.5
    • /
    • pp.446-451
    • /
    • 2001
  • The interaction of cytochrome c with binary phospholipid mixtures was investigated by solid-state $^2H$- and $^{31}P$-NMR. To examine the effect of the interaction on the glycerol backbones, the glycerol moieties of phosphatidylcholine (PC), and cardioliph (CL) were specifically deuterated. On the binding of cytochrome c to the binary mixed bilayers, no changes in the quadrupole splittings of each of the components were observed for the PC/PG, PE/CL and PE/PG liposomes. In contrast, the splittings of CL decreased on binging of protein to the PC/CL liposomes, although those of PC did not change at all. This showed that cytochrome c specifically interacts with CL in PC/CL bilayers, and penetrates into the lipid bilayer to some extent so as to perturb the dynamic structure of the glycerol backbone. This is distinctly different from the mode of interaction of cytochrome c with other binary mixed bilayers. In the $^{31}P$-NMR spectra, line broadening and a decrease of the chemical shift anisotropy were observed on the binding of cytochrome c for all binary mixed bilayers that were examined. These changes were more significant for the PC/CL bilayers. Furthermore, the line broadening is more significant for PC than for CL in PC/CL bilayers. Therefore, it can be concluded that with the polar head groups, not only CL but also PC are involved in the interaction with cytochrome c.

  • PDF

Phosphorylation of silk fibroin and its properties (견 피브로인의 인산화와 그 특성)

  • 문장희;김정호;배도규;신봉섭
    • Journal of Sericultural and Entomological Science
    • /
    • v.43 no.2
    • /
    • pp.116-124
    • /
    • 2001
  • To improve the functional properties as a food, silk fibroin was phosphorylated with STMP In the phosphorylation reaction of silk fibroin, the degree of phosphorylation was increased with high alkali index and treatment temperature. Depending on treatment time and concentration of STMP it was rapidly increased up to 1hr. and 50%, but slowly above that time and 100%. It was indicated in the results of FT-IR analysis and $\^$31/p NMR spectroscopy of phosphorylated fibroin that it had a close ∝-helix and poly-phosphate structure. The more phosphorylation of fibroin made more turbidity, foam expansion and foam stability, but less solubility. Emulsifying activity was increased up to P100, but slightly decreased above Pl00 and emulsifying stability was constantly increased on the progressing of phosphorylation.

  • PDF

Characterization of the Catalytic Heteropoly Compounds using Solid-state NMR

  • Kim, Y;Lee, W
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.1 no.1
    • /
    • pp.45-58
    • /
    • 1997
  • Heteropoly compounds, H3PMo12O40, CsxH3-xPMo12O40, and vanadium containing heteropoly compound were characterized by Solid-state broad line 1H MAS NMR, 31P MAS NMR, and High Speed MAS 51V NMR spectroscopy of quadrupolar nuclei. The effects of calcination, dehydration, and the number of protons on the structure of heteropoly compounds were studied. The results of this study demonstrate that these Solid-state NMR techniques are very useful tools to study heteropoly compounds.

  • PDF

A Study of Phosphate Adsorption on Kaolinite by $^{31}$P NMP Spectroscopy ($^{31}$P NMR을 이용한 카올리나이트에 흡착된 인산염의 연구)

  • 김영규
    • Journal of the Mineralogical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.186-195
    • /
    • 2000
  • To study phosphate adsorption on kaolinite, $^{31}$ P MAS NMR(magic angle spinning nuclear magnetic resonance spectroscopy)has been used for kaolinite reacted in 0.1 M phosphate solutions at pH’s from 3 to 11. There are at least 3 different forms of phosphate on kaolinite. One is the phosphate physically adsorbed on kaolinite surface (outer-sphere complexes) or species left after vacuum-filtering. The second is the phosphate adsorbed by ligand exchange (inner-sphere complexes), and the third is Al-phosphate precipitates which are pH dependent. Most of the inner-spherer complexes and surface precipitates are mainly on hydroxided Al(aluminol) rather than hydroxided Si(silanol). These are pertinent with the results obtained from the phosphate adsorption experiments on silica gel and ${\gamma}$-Al$_2$O$_3$ as model compounds, respectively. The two peaks with more negative chemical shifts(more shielded) than the ortho-phosphate peak (positive chemical shift) are assigned to be the inner-sphere complexes and surface precipitates. The $^{31}$ P chemical shifts of the Al-phosphate precipitates are more negative than those of inner-sphere complexes at a given pH due to the larger number of P-O-Al linkages per tetrahedron. The chemical shifts of both the inner-sphere complexes and surface precipitates are more negative than those of inner-sphere complexes at a given pH due to the larger number of P-O-Al linkages per tetrahedron. The chemical shifts of both the inner-sphere complexes and surface precipitates become progressively less shielded with increasing pH. For the inner-sphere complexes, decreasing phosphate protonation combined with peak averaging by rapid proton exchange among phosphate tetrahedra with different numbers of protons is though to be the reason for the peak change. The decreasing shielding with increasing pH for surface precipitates is probably due to the decreasing average number of P-O-Al linkages per tetrahedron combined with decreasing protonation like inner-sphere complexes.

  • PDF

Investigation of Phosphorus Species in Marine Sediment (해저 퇴적물에 함유된 인의 존재 형태에 대한 연구)

  • 김영규
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.151-159
    • /
    • 2003
  • $^{31}$ /P NMR and XRD have been used to study the mineralogical compositions and the phosphorus species in marine sediments near Wolsung nuclear power plant. The core samples with 30cm depth were investigated and no mineralogical changes have been found. The studied marine sediments were composed of quartz, albite, microcline, calcite, and some clay minerals such as illite, smectite, chlorite, and kaolinite. Only orthophosphate-monoester and very small amount of ortho-phosphate-diester were identified as phosphorus species in the studied sample, different from the species reported in other countries. These phosphorus species are mainly from organisms and was exposed to the oxic conditions. The consistent mineralogical compositions as well as the same phosphorus species throughout the entire core samples indicate that the constant oxic condition was kept without any changes in sedimentary conditions or the sediments were deposited with different sedimentary conditions, but later they were disturbed by other activities and exposed to the surface oxic conditions continuously.