Solid-State ³¹P NMR CST in Pt₂ and PtX₂

- Kato, T.; Kodama, T.; Nakagawa, T.; Matsui, Y.; Suzuki, S.; Shiromaru, H. Chem. Phys. Lett. 1991, 180, 446.
- Kukolich, S. G.; Huffman, D. R. Chem. Phys. Lett. 1991, 182, 263.
- 11. Liehr, A. D. Ann. Rev. Phys. Chem. 1962, 13, 47.
- Su, W. P.; Schriffer, J. R.; Heeger, A. Phys. Rev. 1983, B22, 2099; ibid, 1983, B28, 1138; Phys. Rev. Lett. 1979, 42, 1698.
- Harigaya, K. Phys. Rev. 1992, B45, 13676. Friedman, B. Phys. Rev. 1992, B45, 1454. Fu, R. T.; Sun, X.; Chen, Z. Chinese Phys. Lett. 1992, 9, 541.
- 14. Lee, K. H.; Paek, U. J. Phys. Chem. Solids 1993, 54, 565.
- 15. Fu, R. T.; Lee, K. H.; Park, T. Y.; Sun, X.; Yu, Z. G.

Bull. Korean Chem. Soc. 1996, Vol. 17, No. 5 457

Bull. Korean Chem. Soc. 1994, 15, 112.

- Fu, R. T.; Fu, R.; Lee, K. H.; Sun, X.; Ye, H. J.; Yu, Z. G. Bull. Korean Chem. Soc. 1993, 14, 740.
- Bendale, R. D.; Stanton, J. F.; Zener, M. Chem. Phys. Lett. 1992, 194, 467.
- 18. Shastry, B. S. J. Phys. 1983, A16, 2049.
- 19. Friedman, B.; Harigaya, K. Phys. Rev. 1993, B47, 6975.
- Varma, C. M.; Zaanen, J.; Raghavachari, K. Science 1991, 254, 989.
- Schluter, M.; Lannoo, M.; Needels, M.; Baraff, G. A.; Tomanek, D. Phys. Rev. Lett. 1992, 68, 526.
- You, W. M.; Wang, C. L.; Zhang, F. C.; Su, Z. B. Phys. Rev. 1993, B47, 4765.

Solid-State ³¹P NMR Chemical Shielding Tensors in Binuclear Platinum Diphosphite Complexes

Ae Ja Woo* and Leslie G. Butler

*Department of Science Education, Ewha Womans University, Seoul 120-750, Korea Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, U.S.A. Received February 1, 1996

The principal elements of the ³¹P NMR chemical shielding tensors have been determined for three binuclear platinum diphosphite complexes, $K_4[Pt_2(P_2O_5H_2)_4]\cdot 2H_2O$ ("Pt₂"), $K_4[Pt_2(P_2O_5H_2)_4Cl_2]\cdot 2H_2O$ ("Pt₂Cl₂"), and $K_4[Pt_2(P_2O_5H_2)_4Br_2]\cdot 2H_2O$ ("Pt₂Br₂"), by using a Herzfeld-Berger graphical method for interpreting the ³¹P MAS spectrum. The orientations of ³¹P chemical shielding tensor relative to the molecular axis system are partially assigned with combination of the longitudinal relaxation study of HPO₃²⁻ and the reference to known tensor orientations of related sites; the most chemical shielding component, δ_{33} , is directed along the P-Pt bond axis. A discussion is given in which the experimental principal elements of the ³¹P chemical shielding tensor are related with the Pt-Pt bond distances in binuclear platinum diphosphite complexes.

Introduction

Solid-state NMR spectroscopy of S=1/2 nuclei, principally ¹³C and ³¹P, has been utilized to yield information concerning the molecular geometry, electronic structure, and motion of molecules in organometallic systems. ³¹P NMR spectroscopy has been more frequently used than ¹³C in the organometallic studies, because of the 100% natural abundance and the relatively high sensitivity of the ³¹P nucleus. ³¹P chemical shielding tensors have been successfully correlated with the molecular structural parameters such as bond angles and bond distances in phosphido-bridged complexes and phosphates.¹² Similarly, the correlation between the ³¹P isotropic chemical shift and the cation charge of orthophosphates has been investigated.³ The cis-trans isomerization of (R₃P)₂MCl₂ (M=Pd, Pt)⁴⁵ and the determination of NMR parameters in cyclic/acyclic phosphine complexes^{6,7} have been studied by ³¹P CP/MAS NMR spectroscopy. In addition, the effects of molecular motion for solid P_4^8 and phase transition for $P_4S_3^9$ on ³¹P NMR spectra have been investigated. Two-dimensional ³¹P CP/MAS NMR techniques have been applied to separate the unresolved interactions in the metal phosphine complexes.¹⁰

Binuclear platinum diphosphite complexes, $K_4[Pt_2(P_2O_5H_2)_4]$. $2H_2O$ ("Pt₂"), K₄[Pt₂(P₂O₅H₂)₄X]·2H₂O ("Pt₂X"), and K₄[Pt₂ $(P_2O_5H_2)_4X_2$ · 2H₂O ("Pt₂X₂"; X=Cl, Br, l), have attracted attention because they can be used to prepare linear chain structures with the electrical properties of a semiconductor.11~15 The semiconductivity of these complexes have been indirectly investigated by the determination of the intermetallic bond distances from X-ray crystallography. The intermetallic bonding have also been characterized from electronic and vibrational spectroscopic data.^{16~18} Herein, three orincipal elements and the partial orientation of the ³¹P chemical shielding tensors for Pt₂, Pt₂Cl₂, and Pt₂Br₂ were determined by using the solid-state ³¹P MAS spectroscopy. Consequently, the NMR results will be related to the Pt-Pt distances in the molecular structures, Pt₂ and Pt₂X₂, to access information about the changes in the Pt-Pt bond that are so important to conduction in the Pt₂X system.

^{*}To whom correspondence should be addressed.

458 Bull. Korean Chem. Soc. 1996, Vol. 17, No. 5

Experimental

Sample Preparation. $K_4[Pt_2(P_2O_5H_2)_4] \cdot 2H_2O$ ("Pt₂"), K_4 [Pt₂(P₂O₅H₂)₄Cl₂] $\cdot 2H_2O$ ("Pt₂Cl₂"), and $K_4[Pt_2(P_2O_5H_2)_4Br_2] \cdot 2H_2O$ ("Pt₂Br₂") were prepared by the literature method.^{19,20} All chemicals were obtained from Aldrich Chemical Company, Inc.

Solid-State ³¹P NMR Spectroscopy. Solid-state ³¹P powder patterns were taken on stationary samples with a Bruker MSL200 solid-state NMR spectrometer operating at 80.98 MHz using a high power probe with a solenoidal coil. The 90° pulse length was 2 μ s and the spectra were acquired as simple Bloch decays. The ³¹P MAS (Magic Angle Spinning) spectra were acquired on Bruker MSL200 and 500 solid-state NMR spectrometers using a 15 kHz CP/MAS probe and a 4 mm ZrO_2 rotor with a Kel-F cap. The magic angle was adjusted by examining the ⁷⁹Br NMR signal of KBr.²¹ Powdered samples, 70 to 100 mg, were loosely packed into the rotor along with alumina as an inert filler. At 80.98 MHz resonance frequency (MSL200), the 90° pulse was 5 µs and the spectra were acquired as simple Bloch decays. At 202.46 MHz (MSL500), an 8.9 µs (<90° tip angle) pulse was used. The ³¹P chemical shift values recorded on the δ -scale are referenced to 85% H₃PO₄ as external standard. All spectra are exponentially filtered (200 Hz), Fourier transformed, and manually phased.

Solid-State ³¹P NMR Chemical Shielding Tensors. A Herzfeld-Berger graphical method²² was used to obtain three principal elements (δ_{11} , δ_{22} , and δ_{33}) of the ³¹P chemical shielding tensors from the intensities of the spinning sidebands and the isotropic chemical shift, δ_{isor} , in the ³¹P MAS spectra. The effects of dipolar and *J* couplings between ³¹P and ¹⁹⁵Pt nuclei on the relative intensities of the ³¹P MAS peaks²³ were neglected.

Results and Discussion

Shown in Figure 1 are the featureless ³¹P NMR powder pattern at stationary and well-resolved ³¹P MAS NMR spectra at three different spinning rates of Pt₂. It is difficult to reliably extract the principal elements of the ³¹P chemical shielding tensor from the powder pattern. In principle, an analysis of the ³¹P NMR powder patterns can be made by using ³¹P Zeeman and chemical shielding interactions and dipolar and I coupling interactions between ³¹P and ¹⁹⁵Pt nuclei. However, because the chemical shift anisotropy interaction for the phosphorus site is relatively small with respect to both dipolar and J coupling interactions between ³¹P and ¹⁸⁵Pt nuclei, the ³¹P powder pattern is featureless at 4.7 Tesla. Thus, the uncertainty in the fit of a simulated ³¹P powder pattern to the experimental powder pattern is unacceptably large. For this reason, the principal elements of the ³¹P chemical shielding tensor were acquired from a Herzfeld-Berger graphical analysis of the ³¹P MAS spectra. In the MAS experiment, it is possible to focus on the spinning sidebands of the S=0 Pt isotopomer; thus the ¹⁹⁵Pt (S=1/2) spectral component shown as crosses (+) in Figure 1 is excluded from the analysis. It is usual to analyze below 2-3 kHz slow spinning spectra to obtain the reliable data. However, in this work, above 6 kHz spinning rate spectra have been used

Figures 1. Solid-state ³¹P powder pattern of K₄[Pt₂(P₂O₅H₂),]·2 H₂O ("Pt₂") and ³¹P MAS spectra at different spin rates, v_r. Asterisks (*) and crosses (+) represent the spinning sidebands and the *J* coupling peaks to ¹⁹⁵Pt, respectively. Experimental parameters are as follows: (a) v_L=80.98 MHz, v_r=0 kHz, NS=30, RD= 120 s; (b) 202.46 MHz, 6 kHz, 16, 100 s; (c) 202.46 MHz, 8 kHz, 8, 100 s.

to avoid the overlap between the spinning sidebands of the S=0 Pt isotopomer and the ¹⁹⁵Pt (S=1/2) spectral bands. Solid-state ³¹P chemical shielding tensor for three binuclear platinum diphosphite complexes are listed in Table 1. The values of isotropic ³¹P chemical shift (δ_{iso}) are essentially the same in solution as in the solid-state; there is an upfield shift going from Pt₂ to Pt₂Cl₂ and Pt₂Br₂. The values of δ_{11} and δ_{33} show upfield shifts while δ_{22} nearly constant.

The orientation of the ³¹P chemical shielding tensor elements relative to the molecular axis system cannot be obtained from a Herzfeld-Berger graphical analysis of the S=0 Pt isotopomers. Single crystal NMR studies were attempted for Pt₂, but were unsuccessful due to a lack of a large crystal. The ³¹P chemical shielding tensor orientations have not been determined experimentally in this study, though the most shielded element, δ_{33} is believed to be parallel to the ¹⁹⁵Pt-³¹P bond axis. The ³¹P chemical shielding tensor orientation assigned partially is shown in Table 1, as is the tensor orientation for a related ³¹P site in the phosphite anion and the phosphines. In the solution-state ³¹P NMR study by Farrar and Locker of HPO₃²⁻, the orientation of the ³¹P chemical shielding tensor elements as shown in Table 1 was determi-

Solid-State ³¹P NMR CST in Pt₂ and PtX₂

Compound	Solid-State ^a			Onivertation	Soli	id-State	Solution-State ⁴		d(Pt-Pt)
	διι	δ_{22}	δ ₃₃	Orientation —	δ _{iso}	J _{Pt-P} (Hz)	δ _{iso}	J _{Pt-P} (Hz)	(Å)
$K_4[Pt_2(P_2O_5H_2)_4] \cdot 2H_2O_5H_2)_4$	138	66	6	Pr-Partin 6az	69.8	3120	69.4	3095	2.925 (1)
$K_4[Pt_2(P_2O_5H_2)_4Cl_2] \cdot 2H_2O$	92	59	-69	Pr-Pr	27.5	ca.2460	28.0	2170	2.695 (1)
$K_4[Pt_2(P_2O_5H_2)_4Br_2] \cdot 2H_2O$	96	60	-71	ν ⁷⁰ ο Ο 1 ²⁻	28.2	2185	24.0	2230	2.723 (4)
	Solution-State								
HPO ₃ ^{2- d}	93	93	-30						

Table 1. So	olid-State ³¹ P	NMR	Chemical	Shielding	Tensors	and	Pt-Pt	Distances	for	Binuclear	Platinum	Diphosphite	Complexes
-------------	----------------------------	-----	----------	-----------	---------	-----	-------	-----------	-----	-----------	----------	-------------	-----------

^aObtained by using a Herzfeld-Berger method. Error limits are ±5 ppm. ^bKing, C.; Roundhill, D. M.; Dickson, M. K.; Fronczek, F. R. *J. Chem. Soc. Dalton Trans.* **1987**, 2769. ^cRef. 12. ^dRef. 24. Tensor orientation shown in the table based upon 3-fold site symmetry at phosphorus.

ned by the longitudinal relaxation study of the P-H spin system.²⁴ A single crystal ³¹P NMR study of chlorotris(triphenylphosphine)rhodium(I) showed that the most shielded element is almost parallel to the Rh-P bond axis.²⁵ Also, the most shielded elements of the ³¹P chemical shielding tensor in a number of solid phosphines were taken to lie along the C₃ (or *pseudo* C₃) axis.²⁶

In the Ramsey approach,^{27,28} the NMR chemical shielding of a nucleus can be decomposed into diamagnetic and paramagnetic contributions, which are generally opposite in sign. Because the coordination at phosphorus is not changed in the series of Pt₂, Pt₂Cl₂, and Pt₂Br₂, the diamagnetic contribution to the chemical shielding tensor elements should remain nearly constant. The range of chemical shift for ³¹P is quite large. The chemical shifts on the δ -scale for the bare ³¹P nucleus and free ³¹P atom are 356 and -605 ppm, respectively, relative to 85% H₃PO₄.²⁹ In fact, highly shielded tensor elements are relatively rare in ³¹P NMR, with P₄ (δ_{11} = -190, $\delta_{22} = -597$, and $\delta_{33} = -597$ ppm)⁸ and related systems such as P_4S_3 (δ_{11} =101, δ_{22} =44, and δ_{33} =-406 ppm)⁹ being some of the few examples. The fact that the value of δ_{33} is not close to that for a free ³¹P atom for any of the binuclear platinum diphosphite complexes listed in Table 1 suggests a large paramagnetic contribution. We speculate that one of the significant changes occurring at the platinum metal center is a change in coordination number from four (Pt_2) to six (Pt_2Cl_2 and Pt_2Br_2), with the higher symmetry of the sixcoordinate site affecting the paramagnetic contribution. Also, the increase in the P-Pt distances (and the decrease in the Pt-Pt distances) from Pt₂ to Pt₂Cl₂ and Pt₂Br₂ is an important factor affecting the more paramagnetic chemical shielding at ³¹P nucleus on the P-Pt bond axis. We have found a good linear relationship between the Pt-Pt distances and the most shielded chemical shielding tensor element, δ_{33} ; more shielded δ_{33} value implies more semiconductivity in the linear chain structures.

Figure 2 compares the ³¹P MAS spectra for Pt₂, Pt₂Cl₂, and Pt₂Br₂. The spectra are similar to solution-state ³¹P NMR spectra, though the line width, ~430 Hz (FWHH), obscures all but the single bond J coupling between ³¹P and ¹⁹⁵Pt nu-

Figure 2. Solid-state ³¹P MAS spectra of $K_4[Pt_2(P_2O_5H_2)_4] \cdot 2H_2O$ ("Pt₂"), $K_4[Pt_2(P_2O_5H_2)_4Ct_2] \cdot 2H_2O$ ("Pt₂Cl₂"), and $K_4[Pt_2(P_2O_5H_2)_4]$ $Br_2] \cdot 2H_2O$ ("Pt₂Br₂") at $v_r = 10$ kHz and $v_L = 80.98$ MHz. The spectra show a single peak at the ³¹P isotropic chemical shift and a doublet due to *J* coupling between ³¹P and ^{19S}Pt nuclei. Experimental parameters are as follows: (a) $K_4[Pt_2(P_2O_5H_2)_4] \cdot 2H_2O$ O, NS=100, RD=30 s; (b) $K_4[Pt_2(P_2O_5H_2)_4Ct_2] \cdot 2H_2O$, 250, 30 s; and, (c) $K_4[Pt_2(P_2O_5H_2)_4Br_2] \cdot 2H_2O$, 88, 30 s.

clei. The 33.7% natural abundant ¹⁹⁵Pt leads to a doublet in the ³¹P spectrum which is superimposed upon the ³¹P 460 Bull. Korean Chem. Soc. 1996, Vol. 17, No. 5

singlet. The isotropic J coupling constants are given in Table 1; the J coupling constants decrease as going from Pt₂ to Pt₂Cl₂ and Pt₂Br₂. A decrease in the value of J (³¹P.¹⁹⁵Pt) may be due to the longer P-Pt bond, with decreased s-orbital character in the P-Pt bonds, which can be explained on the basis of the Pople-Santry equation.³⁰ The doublet for the ³¹P.¹⁹⁵Pt spin system in Pt₂Cl₂ is noticeably asymmetric in the MAS spectrum. An asymmetry of this type in a ³¹P powder pattern has been shown to be a result of anisotropies of the ³¹P chemical shielding and J coupling tensors in (³¹P.¹⁹⁵Pt) ³¹ and (³¹P.¹⁹⁹Hg) systems.^{32,33}

Conclusions

The principal elements and the relative orientations of the ³¹P chemical shielding tensors have been obtained for Pt₂, Pt₂Cl₂, and Pt₂Br₂ complexes in the solid state. The ³¹P isotropic chemical shifts and J (³¹P-¹⁹⁵Pt) coupling constants are essentially the same in solution as in the solid state. There is an upfield shift (more negative values on the δ scale) going from Pt₂ to Pt₂Cl₂ and Pt₂Br₂ complexes in δ_{33} , which is aligned with the P-Pt bond axis. The paramagnetic contribution to δ_{33} has been discussed based on the structural change at the platinum metal center. The results can be correlated with a decrease in the Pt-Pt distances in the order Pt₂>Pt₂Cl₂ \approx Pt₂Br₂.

Acknowledgment. This work was supported by Faculty Research Grant (1994) funded by Ewha Womans University. Dr. Carol Fitzpatrick at the Exxon Research and Engineering Company in U. S. A. are gratefully acknowledged for the use of the Bruker MSL500 NMR spectrometer.

References

- Carty, A. J.; Fyfe, C. A.; Lettinga, M.; Johnson, S.; Randall, L. H. Inorg. Chem. 1989, 28, 4120.
- 2. Un, S.; Klein, M. P. J. Am. Chem. Soc. 1989, 111, 5119.
- Turner, G. L.; Smith, K. A.; Kirkpatrick, R. J.; Oldfield, E. J. Magn. Reson. 1986, 70, 408.
- Nelson, J. H.; Rahn, J. A.; Bearden, W. H. Inorg. Chem. 1987, 26, 2192.
- 5. Rahn, J. A.; Baltusis, L.; Nelson, J. H. Inorg. Chem. 1990, 29, 750.
- Lindner, E.; Fawzi, R.; Mayer, H. A.; Eichele, K.; Pohmer, K. Inorg. Chem. 1991, 30, 1102.
- Lindner, E.; Fawzi, R.; Mayer H. A.; Elchele, K.; Hiller, W. Organometallics 1992, 11, 1033.
- Spiess, H. W.; Grosescu, R.; Haeberlen, U. Chem. Phys. 1974, 6, 226.
- 9. Bjorholm, T.; Jakobsen, H. J. J. Magn. Reson. 1989, 84,

204.

- 10. Wu, G.; Wasylishen, R. E. Organometallics 1992, 11, 3242.
- Butler, L. G.; Zietlow, M. H.; Che, C.-M.; Schaefer, W. P.; Sridhar, S.; Grunthaner, P. J.; Swanson, B. I.; Clark, R. J. H.; Gray, H. B. *J. Am. Chem. Soc.* **1988**, *110*, 1155.
- Roundhill, D. M.; Gray, H. B.; Che, C.-M. Acc. Chem. Res. 1989, 22, 55.
- Filomena Dos Remedios Pinto, M. A.; Sadler, P. J.; Neidle, S.; Sanderson, M. R.; Subbiah, A.; Kuroda, R. J. Chem. Soc., Chem. Commun. 1980, 13.
- Che, C.-M.; Schaefer, W. P.; Gray, H. B.; Dickson, M. K.; Stein, P. B.; Roundhill, D. M. J. Am. Chem. Soc. 1982, 104, 4253.
- Clark, R. J. H.; Kurmoo, M.; Dawes, H. M.; Hursthouse, M. B. Inorg. Chem. 1986, 25, 409.
- Fordyce, W. A.; Brummer, J. G.; Crosby, G. A. J. Am., Chem. Soc. 1981, 103, 7061.
- Stein, P.; Dickson, M. K.; Roundhill, D. M. J. Am. Chem. Soc. 1983, 105, 3489.
- Alexander, K. A.; Bryan, S. A.; Fronczek, F. R.; Fultz, W. C.; Rheingold, A. L.; Roundhill, D. M.; Stein, P.; Watkins, S. F. Inorg. Chem. 1985, 24, 2803.
- Alexander, K. A.; Bryan, S. A.; Dickson, M. K.; Hedden, D.; Roundhill, D. M. Inorg. Synth. 1986, 24, 211.
- Che, C.-M.; Herbstein, F. H.; Schaefer, W. P.; Marsh, R. E.; Gray, H. B. J. Am. Chem. Soc. 1983, 105, 4604.
- 21. Frye, J. S.; Maciel, G. E. J. Magn. Reson, 1982, 48, 125.
- 22. Herzfeld, J.; Berger, A. E. J. Chem. Phys. 1980, 73, 6021.
- Wu, G.; Wasylishen, R. E.; Curtis, R. D. Can. J. Chem. 1992, 70, 863.
- 24. Farrar, T. C.; Locker, I. C. J. Chem. Phys. 1987, 87, 3281.
- 25. Naito, A.; Sastry, D. L.; McDowell, C. A. Chem. Phys. Lett. 1985, 115, 19.
- Penner, G. H.; Wasylishen, R. E. Can. J. Chem. 1989, 67, 1909.
- 27. Ramsey, N. F. Phys. Rev. 1950, 78, 699.
- Goggin, P. L.; Goodfellow, R. J.; Haddock, S. R.; Taylor, B. F.; Marshall, I. R. H. J. Chem. Soc., Dalton Trans. 1976, 459.
- 29. Malli, G.; Froese, C. Int. J. Quantum Chem. 1967, 1S, 95.
- Nixon, J. F.; Pidcock, A. Annu. Rev. N. M. R. Spectrosc. 1969, 2, 345.
- Power, W. P.; Wasylishen, R. E. Inorg. Chem. 1992, 31, 2176.
- Power, W. P.; Lumsden, M. D.; Wasylishen, R. E. Inorg. Chem. 1991, 30, 2997.
- Power, W. P.; Lumsden, M. D.; Wasylishen, R. E. J. Am. Chem. Soc. 1991, 113, 8257.