• Title/Summary/Keyword: $^{244}Cm$

Search Result 155, Processing Time 0.021 seconds

Transmutation of Am-241, 243 and Cm-244 in a Conventional Pressurized Water Reactor

  • Koh, Duck-Joon;Lee, Myung-Chan;Jeong, Woo-Tae;Boris P. Kochurov
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.423-428
    • /
    • 1996
  • The feasibility study on burning Am-241, 243 and Cm-244 nuclides in a conventional PWR (Pressurized Water Reactor) was carried out by using the TRIFON code that was developed by the Institute of Theoretical and Experimental Physics in Russia in 1992. TRIFON code uses updated ABBN Russian nuclear cross section library. The reference reactor is the Korea nuclear power plant unit 8 (YGN 2). The burning effect of Am-241, 243 and Cm-244 nuclides was studied with UO$_2$(3.5 w/o)fuel assembly and MOX (4.44 w/o) fuel assembly. The loaded mass ratio of Am-241, 243 and Cm-244 nuclides was obtained from the mass ratio of Am-241, 243 and Cm-244 nuclides in 10 year cooling spent fuel with average discharge burnup of 33 GWD/MTU. The effective transmutation rates of Am-241, 243 and Cm-244 nuclides in UO$_2$ fuel assembly were found to be higher than those in MOX fuel assembly. The result from TRIFON code was compared to that from CASMO-3/NEM-3D code system. For more reliable calculation of transmutation for MA(Minor Actinides) more sophisticated decay chain scheme of MA should be investigated and nuclear cross section library of MA should be considerably improved.

  • PDF

Investigations on the Pu-to-244Cm ratio method for Pu accountancy in pyroprocessing

  • Sunil S. Chirayath;Heukjin Boo;Seung Min Woo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3525-3534
    • /
    • 2023
  • Non-uniformity of Pu and Cm composition in used nuclear fuel was analyzed to determine its effect on Pu accountancy in pyroprocessing, while employing the Pu-to-244Cm ratio method. Burnup simulation of a typical pressurized water reactor fuel assembly, required for the analysis, was carried out using MCNP code. Used fuel nuclide composition, as a function of nine axial and two radial meshes, were evaluated. The axial variation of neutron flux and self-shielding effects were found to affect the uniformity of Pu and Cm compositions and in turn the Pu-to-244Cm ratio. However, the results of the study showed that these non-uniformities do not affect the use of Pu-to-244Cm ratio method for Pu accountancy, if the measurement samples are drawn from the voloxidized powder at the feed step of pyroprocessing. 'Material Unaccounted For' and its uncertainty estimates are also presented for a pyrprocessing facility to verify safeguards monitoring requirements of the IAEA.

Determination of $^{241}$Am and $^{241}$Cm in Radwaste Samples (방사성폐기물 시료 중 $\^{241}$Am과 $\^{244}$Cm의 정량)

  • Joe Kih Soo;Kim Tae Hyun;Jeon Young Shin;Jee Kwsng Yong;Kim Won Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Anion exchange chromatography and HDEHP extraction chromatography using DTPA-lactic acid as an eluent were applied in series for the separation of $^{241}$Am and $^{244}$Cm in radwaste samples. The separated elements were determined by electrodeposition at the sodium hydrogen sulfate-sodium sulfate buffer solution followed by alpha-spectrometry. The recovery yields of $^{241}$Am and $^{244}$Cm were 85.2$\pm$$15.3\%$, respectively, from the synthetic solution of spent nuclear fuel sample. The amounts of 241Am and 2440m determined in radwaste sample solutions of condensate bottoms were at the range of 1.5-1.9 Bq/g and -1.7 Bq/g, respectively.

  • PDF

Determination of Transuranic Elements in Radwaste Samples from Nuclear Power Plant (원전발생 방사성폐기물 시료 중 초우란원소의 정량)

  • 조기수;김태현;전영신;지광용;김원호
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.351-357
    • /
    • 2003
  • Transuranic elements such as Pu, Am and Cm in synthetic solution of spent nuclear fuel samples were determined by electrodeposition followed by alpha-spectrometry after separation using anion exchange and extraction chromatography in order to determine the transuranic elements in radwaste samples from nuclear power plants. Plutonium was separated by 12M HC1-0.1M HI as an eluent on anion exchange column. As a second step Am and Cm were separated in a group by DTPA-Lactic acid as the eluent on HDEHP coated column. The nuclides of $^{239}Pu$, $^{241}Am$$^{244}Cm$ separated were determined by alpha-spectrometry after electrodeposition in 0.1M $NaHSo_4$-0.53M $Na_2SO_4$buffer solution as an electrolyte. The recovery yields of $^{239}Pu$, $^{241}Am$$^{244}Cm$ were 83.8%, 85.2% and 86.3%, respectively, from the synthetic solution containing uranium and non-radioactive metal elements.

  • PDF

Nuclide composition non-uniformity in used nuclear fuel for considerations in pyroprocessing safeguards

  • Woo, Seung Min;Chirayath, Sunil S.;Fratoni, Massimiliano
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1120-1130
    • /
    • 2018
  • An analysis of a pyroprocessing safeguards methodology employing the Pu-to-$^{244}Cm$ ratio is presented. The analysis includes characterization of representative used nuclear fuel assemblies with respect to computed nuclide composition. The nuclide composition data computationally generated is appropriately reformatted to correspond with the material conditions after each step in the head-end stage of pyroprocessing. Uncertainty in the Pu-to-$^{244}Cm$ ratio is evaluated using the Geary-Hinkley transformation method. This is because the Pu-to-$^{244}Cm$ ratio is a Cauchy distribution since it is the ratio of two normally distributed random variables. The calculated uncertainty of the Pu-to-$^{244}Cm$ ratio is propagated through the mass flow stream in the pyroprocessing steps. Finally, the probability of Type-I error for the plutonium Material Unaccounted For (MUF) is evaluated by the hypothesis testing method as a function of the sizes of powder particles and granules, which are dominant parameters to determine the sample size. The results show the probability of Type-I error is occasionally greater than 5%. However, increasing granule sample sizes could surmount the weakness of material accounting because of the non-uniformity of nuclide composition.

Evaluation of nuclear material accountability by the probability of detection for loss of Pu (LOPu) scenarios in pyroprocessing

  • Woo, Seung Min;Chirayath, Sunil S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.198-206
    • /
    • 2019
  • A new methodology to analyze the nuclear material accountability for pyroprocessing system is developed. The $Pu-to-^{244}Cm$ ratio quantification is one of the methods for Pu accountancy in pyroprocessing. However, an uncertainty in the $Pu-to-^{244}Cm$ ratio due to the non-uniform composition in used fuel assemblies can affect the accountancy of Pu. A random variable, LOPu, is developed to analyze the probability of detection for Pu diversion of hypothetical scenarios at a pyroprocessing facility considering the uncertainty in $Pu-to-^{244}Cm$ ratio estimation. The analysis is carried out by the hypothesis testing and the event tree method. The probability of detection for diversion of 8 kg Pu is found to be less than 95% if a large size granule consisting of small size particles gets sampled for measurements. To increase the probability of detection more than 95%, first, a new Material Balance Area (MBA) structure consisting of more number of Key Measurement Points (KMPs) is designed. This multiple KMP-measurement for the MBA shows the probability of detection for 8 kg Pu diversion is greater than 96%. Increasing the granule sample number from one to ten also shows the probability of detection is greater than 95% in the most ranges for granule and powder sizes.

Spectral Reconstruction for High Spectral Resolution in a Static Modulated Fourier-transform Spectrometer

  • Cho, Ju Yong;Lee, Seunghoon;Kim, Hyoungjin;Jang, Won Kweon
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.244-251
    • /
    • 2022
  • We introduce a spectral reconstruction method to enhance the spectral resolution in a static modulated Fourier-transform spectrometer. The optical-path difference and the interferogram in the focal plane, as well as the relationship of the interferogram and the spectrum, are discussed. Additionally, for better spectral reconstruction, applications of phase-error correction and apodization are considered. As a result, the transfer function of the spectrometer is calculated, and then the spectrum is reconstructed based on the relationship between the transfer function and the interferogram. The spectrometer comprises a modified Sagnac interferometer. The spectral reconstruction is conducted with a source with central wave number of 6,451 cm-1 and spectral width of 337 cm-1. In a conventional Fourier-transform method the best spectral resolution is 27 cm-1, but by means of the spectral reconstruction method the spectral resolution improved to 8.7 cm-1, without changing the interferometric structure. Compared to a conventional Fourier-transform method, the spectral width in the reconstructed spectrum is narrower by 20 cm-1, and closer to the reference spectrum. The proposed method allows high performance for static modulated Fourier-transform spectrometers.