• Title/Summary/Keyword: $^{18}Fluorodeoxyglucose$

Search Result 135, Processing Time 0.036 seconds

Assessment of Tumor Response to Therapy in Lymphoma Using $^{18}F$-FDG PET: Diagnostic Performance of $^{18}F$-FDG PET and Interval Likelihood Ratio PET and Interval Likelihood Ratio ($^{18}F$-FDG PET을 이용한 림프종 치료 반응 평가: $^{18}F$-FDG PET의 진단 성능 특성과 구간 우도비)

  • Kim, Chang-Guhn;Kim, Dae-Weung;Park, Moo-Rim
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.369-385
    • /
    • 2009
  • In this paper, the authors intended to summarize briefly the features of lymphoma with regard to $^{18}F$-FDG PET for assessment of tumor response to therapy, to describe why assessment of treatment response should be performed, to review what method so far has been used in monitoring treatment response, to discuss what limitations of morphologic imaging criteria for assessing tumor response are, in compared with $^{18}F$-FDG PET, and to introduce recently proposed criteria for assessing tumor response in malignant lymphoma. And also the authors emphasize the need to understand the characteristics of diagnostic performance of $^{18}F$-FDG PET in several clinical settings in order to interpret $^{18}F$-FDG PET results appropriately, and to encourage the use of interval likelihood ratio to enhance clinical implications of test results which, in turns, allows referring physicians to understand the meaning of interpretation with easy. Until recently, treatment response has been assessed according to the morphologic criteria. Metabolic imaging with $^{18}F$-FDG PET was adopted to have important role for treatment assessment in IWC+PET criteria proposed recently by IHP. To accomplish this role, we should perform and interpret $^{18}F$-FDG PET according to IWC+PET criteria. It is important for referring physicians to understand the various limitations of $^{18}F$-FDG PET and pitfalls in PET interpretation, and to understand that clinical information are needed by nuclear medicine physicians to optimize the interpretation of $^{18}F$-FDG PET.

Accuracy of F-18 FDG PET/CT in Preoperative Assessment of Cervical Lymph Nodes in Head and Neck Squamous Cell Cancer: Comparison with CT/MRI (두경부 편평상피암 환자에서 수술 전 경부림프절 전이 평가에 대한 F-18 FDG PET/CT의 정확도: CT/MRI와의 비교)

  • Choi, Seung-Jin;Byun, Sung-Su;Park, Sun-Won;Kim, Young-Mo;Hyun, In-Young
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.6
    • /
    • pp.309-315
    • /
    • 2006
  • Purpose: Accurate evaluation of cervical lymph node (LN) metastasis of head and neck squamous cell canter (SCC) is important to treatment planning. We evaluated the diagnostic accuracy of F-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for the detection of cervical LN metastasis of head and neck SCC and performed a retrospective comparison with CT/MRI findings. Materials & Methods: Seventeen patients with pathologically proven head and neck SCC underwent F-18 FDG PET/CT and CT/MRI within 4 week before surgery. We recorded lymph node metastases according to the neck level system of imaging-based nodal classification. F-18 FDG PET/CT images were analyzed visually for assessment of regional tracer uptake in LN. We analyzed the differences in sensitivity and specificity between F-18 FDG PET/CT and CT/MRI using the Chi-square test. Results: Among the 17 patients, a total of 123 LN levels were dissected, 29 of which showed metastatic involvement. The sensitivity and specificity of F-18 FDG PET/CT for detecting cervical LN metastasis on a level-by-level basis were 69% (20/29) and 99% (93/94). The sensitivity and specificity of CT/MRI were 62% (18/29) and 96% (90/94). There was no significant difference in diagnostic accuracy between F-18 FDG PET/CT and CT/MRI. Interestingly, F-18 FDG PET/CT detected double primary tumor (hepatocellular carcinoma) and rib metastasis, respectively. Conclusion: There was not statistically significant difference of diagnostic accuracy between F-18 FDG PET/CT and CT/MRI for the detection of cervical LN metastasis of head and neck SCC. The low sensitivity of F-18 FDG PET/CT was due to limited resolution for small metastatic deposits.

Decreased glucose uptake by hyperglycemia is regulated by different mechanisms in human cancer cells and monocytes (사람 암세포와 단핵세포에서 고포도당 농도에 의한 FDG 섭취 저하의 서로 다른 기전)

  • Kim, Chae-Kyun;Chung, June-Key;Lee, Yong-Jin;Hong, Mee-Kyoung;Jeong, Jae-Min;Lee, Dong-Soo;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.2
    • /
    • pp.110-120
    • /
    • 2002
  • To clarify the difference in glucose uptake between human cancer cells and monocytes, we studied $[^{18}F]$ fluorodeoxyglucose (FDG) uptake in three human colon cancer cell lines (SNU-C2A, SNU-C4, SNU-C5), one human lung cancer cell line (NCI-H522), and human peripheral blood monocytes. The FDG uptake of both cancer cells and monocytes was increased in glucose-free medium, but decreased in the medium containing 16.7 mM glucose (hyperglycemic). The level of Glut1 mRNA decreased in human colon cancer cells and NCI-H522 under hyperglycemic condition. Glut1 protein expression was also decreased in the four human cancer cell lines under hyperglycemic condition, whereas it was consistently undetectable in monocytes. SNU-C2A, SNU-C4 and NCI-H522 showed a similar level of hexokinase activity (7.5 - 10.8 mU/mg), while SNU-C5 and monocytes showed lower range of hexokinase activity (4.3 - 6.5 mU/mg). These data suggest that glucose uptake is regulated by different mechanisms in human cancer cells and monocytes.

Evaluation of Cancer Treatment Using FDG-PET (FDG-PET을 이용한 암 치료 효과의 평가)

  • Ryu, Jin-Sook
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.1
    • /
    • pp.64-73
    • /
    • 2002
  • FDG-PET has potential as an effective, non-invasive tool to measure tumor response to anticancer therapy. The changes in tumor FDG uptake may provide an early, sensitive guide to the clinical and subclinical response of tumors to cancer treatment, as well as functional assessment of residual viable tumor. This may allow the evaluation of subclinical response to anticancer drugs in early clinical trials and improvements in patients management. However, monitoring tumor responses with FDG-PET is still in its infancy. The methods of measurement of FDG uptake are currently diverse and timing with respect to anti cancer therapy variable. Therefore, there is a need for larger-scale trials along with standardized methodology and a collection of reproducibility data. The recent guideline from the European group seems to be the most comprehensive. In future, the combination of morphological and metabolic images may improve the quantitative nature of these measurements by relating tumor viability to total tumor mass. More data on sensitivity and specificity of FDG-PET technique are needed along with continued advancement of PET methodology.

Nuclear Imaging in Epilepsy (간질에서의 핵의학 영상)

  • Chun, Kyung-Ah
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.97-101
    • /
    • 2007
  • Correct localization of epileptogenic zone is important for the successful epilepsy surgery. Both ictal perfusion single photon emission computed tomography (SPECT) and interictal F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) can provide useful information in the presurgical localization of intractable partial epilepsy. These imaging modalities have excellent diagnostic sensitivity in medial temporal lobe epilepsy and provide good presurgical information in neocortical epilepsy. Also provide functional information about cellular functions to better understand the neurobiology of epilepsy and to better define the ictal onset zone, symptomatogenic zone, propagation pathways, functional deficit zone and surround inhibition zones. Multimodality imaging and developments in analysis methods of ictal perfusion SPECT and new PET ligand other than FDG help to better define the localization.

Differentiation of Medial or Lateral Temporal Lobe Epilepsy by F-18-Fluorodeoxyglucose Positron Emission Tomography: Comparative Study with Magnetic Resonance Imaging in 113 Surgically and Pathologically Proven Patients (F-18-Fluorodeoxyglucose 양전자단층촬영을 이용한 내외측 측두엽간질의 감별: 수술과 병리 소견으로 확진한 113예에서 자기공명영상과 비교 분석)

  • Lee, Dong-Soo;Lee, Sang-Kun;Chang, Ki-Hyun;Chung, Chun-Kee;Choi, Ki-Young;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.2
    • /
    • pp.111-119
    • /
    • 1999
  • Purpose: As mesial temporal lobe epilepsy (TLE) shows hypometabolism of medial and lateral temporal lobe, we investigated whether symmetric uptake of F-18-FDG in medial temporal lobes can differentiate mesial from lateral TLE. Materials and Methods: In 113 patients (83 mesial TLE, 30 lateral TLE) who underwent anterior temporal lobectomy and/or corticectomy with good surgical outcome, we performed F-18-FDG PET and compared F-18-FDG uptake of medial and lateral temporal lobes. All the patients with mesial TLE had hippocampal sclerosis except one congenital abnormal hippocampus. Patients with lateral TLE revealed cerebromalacia, microdysgenesis, arteriovenous malformation, old contusion, and cortical dysplasia. Results: Sensitivity of F-18-FDG PET and MR for mesial TLE was 84% (70/83) and 73% (61/83), respectively. Sensitivity of F-18-FDG PET and MR for lateral TLE was 90% (27/30) and 66% (20/30), respectively. Twelve patients were normal on F-18-FDG PET. 101 patients had hypometabotism of lateral temporal lobe. Among 88 patients who showed hypometabolism of medial temporal lobe as well as lateral temporal lobe, 70 were mesial TLE patients and 18 were lateral TLE on pathologic examination. Positive predictive value of medial temporal hypometabolism for mesial TLE was 80%. Among 13 patients who showed hypometabolism of only lateral temporal lobe, 4 were mesial TLE and 9 were lateral TLE. Positive predictive value of hypometabolism of lateral temporal lobe for the diagnosis of lateral TLE was 69% (9/13). Normal MR findings stood against medial TLE, whose negative predictive value was 66%. Conclusion: Lateral temporal lobe epilepsy should be suspected when there is decreased F-18-FDG uptake in lateral temporal lobe with normal uptake in medial temporal lobe.

  • PDF

A Significant Discrepancy of Uptake between I-131 MIBG and F-18 FDG in a Patient With Malignant Paraganglioma (I-131 MIBG와 F-18 FDG 섭취의 불일치를 보였던 악성 부신경절종 1례)

  • Kim, Jong-Su;Kim, Hyun-Keun;Choi, Kyu-Young;Park, Hyung-Ki;Kim, Eun-Sil;Kim, Yun-Kwon;Kim, So-Yon;Kim, Young-Jung;Lee, Hyo-Jin
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.3
    • /
    • pp.247-251
    • /
    • 2007
  • A 38-year-old man who was diagnosed with malignant paraganglioma underwent computed tomography (CT) and I-131 metaiodobenzylguanidine (MIBG) san. CT showed extensive lymph node enlargement in right iliac area and retroperitoneum with severe hydronephrosis and mass on posterior bladder wall. However, I-131 MIBG scan didn't showed abnormal uptake. He also underwent F-18 fluorodeoxyglucose (FDG) positron emisson tomography/CT for localizing accurate tumor site. F-18 FDG PET/CT showed multiple metastases of left supraclavicular, hilar, mediastinal para-aortic, inguinal, right iliac lymph nodes, lung, vertebrae, and pelvis. There are a few reports showing that the F-18 FDG PET/CT is helpful for staging and localizing tumor site of patients who are diagnosed with negative on the MIBG scans. Thus, we report a case with paraganglioma which showed negative I-131 MIBG scan, but revealed multiple intense hypermetabolic foci in F-18 FDG PET/CT.

The Usefulness of $^{18}F-FDG $ PET as a Cancer Screening Test ($^{18}F-FDG $ PET의 암 선별검사로서의 유용성)

  • Ko, Doo-Heun;Choi, Joon-Young;Song, Yun-Mi;Lee, Su-Jin;Kim, Young-Hwan;Lee, Kyung-Han;Kim, Byung-Tae;Lee, Moon-Kyu
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.6
    • /
    • pp.444-450
    • /
    • 2008
  • Purpose: The aim of this study was to evaluate the usefulness of whole body positron emission tomography (PET) using $^{18}F-fluorodeoxyglucose$ ($^{18}F-FDG$) for cancer screening in asymptomatic subjects. Materials and Methods: The subjects were 1,762 men and 259 women who voluntarily underwent $^{18}F-FDG$ PET for cancer screening as a part of a routine health examination. Final diagnosis was decided by other diagnostic studies, pathological results or clinical follow-up for 1 year. Results: Of 2,021 subjects, 40 (2.0%) were finally proved to have cancer. Abnormal focal $^{18}F-FDG$ uptake suggesting malignancy was found in 102 subjects (5.0%). Among them, 21 subjects (1.0%) were proved to have cancer. Other tests in the routine health examination could not find 9 of 21 cancers (42.9%) detected by PET. The sensitivity, specificity, positive predictive value, and negative predictive value of PET for cancer screening were 52.5%, 95.9%, 20.6%, and 99.0%, respectively. Pathologies of cancers missed on PET were adenocarcinoma (n = 9; 3 colon cancers, 3 prostate cancers, 2 stomach cancers, and 1 rectal cancer), differentiated thyroid carcinoma (n = 6), bronchioalveolar cell carcinoma (n = 2), urinary bladder cancer (n = 1), and melanoma (n = 1). More than half of cancers which were not detected by PET were smaller than 1 cm in diameter. Conclusion: $^{18}F-FDG$ PET might be useful for cancer screening in asymptomatic subjects due to its high specificity and negative predictive value and playa supplementary role to the conventional health check-up, but it could not replace due to limited sensitivity for urological cancers, small-sized tumors and some hypometaboic cancers.

Chelators for 68Ga radiopharmaceuticals

  • Seelam, Sudhakara Reddy;Lee, Yun-Sang;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.1
    • /
    • pp.22-36
    • /
    • 2016
  • $^{68}Ga$ is a promising radionuclide for positron emission tomography (PET). It is a generator-produced ($^{68}Ge/^{68}Ga$-generator) radionuclide with a half-life of 68 min. The employment of $^{68}Ga$ for basic research and clinical applications is growing exponentially. Bifunctional chelators (BFCs) that can be efficiently radiolabeled with $^{68}Ga$ to yield complexes with good in vivo stability are needed. Given the practical advantages of $^{68}Ga$ in PET applications, gallium complexes are gaining increasing attention in biomedical imaging. However, new $^{68}Ga$-labeled radiopharmaceuticals that can replace $^{18}F$-labeled agents like [$^{18}F$]fluorodeoxyglucose (FDG) are needed. The majority of $^{68}Ga$-labeled derivatives currently in use consist of peptide agents, but the development of other agents, such as amino acid or nitroimidazole derivatives and glycosylated human serum albumin, is being actively pursued in many laboratories. Thus, the availability of new $^{68}Ga$-labeled radiopharmaceuticals with high impact is expected in the near future. Here, we present an overview of the different new classes of chelators for application in molecular imaging using $^{68}Ga$ PET.