• Title/Summary/Keyword: $^{18}F$ Fluoromisonidazole

Search Result 7, Processing Time 0.016 seconds

Synthetic approaches toward [18F]Fluoromisonidazole as a hypoxia imaging maker

  • Kwon, Young-Do;Lim, Seok Tae;Jeong, Hwan-Jeong;Sohn, Myung-Hee;Kim, Hee-Kwon
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.1
    • /
    • pp.9-14
    • /
    • 2015
  • Hypoxia has been shown in many tumors because of a reduced oxygen condition. A useful approach to detect hypoxia is to use molecular imaging. Positron emission tomography (PET), one of the biomedical molecular imaging tools, is the most common non-invasive technique for providing information about physiological and biological events such as diseases. In order to use the PET technique for healthcare, promising molecular probes such as PET tracers required. [$^{18}F$]Fluoromisonidazole ([$^{18}F$]FMISO) is the most widely used in PET tracers for hypoxia. In this review, major developments of the synthetic method of [$^{18}F$]FMISO are discussed.

Feasibility of Reflecting Improvement of Tumor Hypoxia by Mild Hyperthermia in Experimental Mouse Tumors with $^18F-Fluoromisonidazole$ (저온온열치료에 의한 종양 내 저산소상태 개선효과를 $^18F$-Fluoromisonidazole의 섭취 변화를 이용한 평가)

  • Lee Sang-wook;Ryu Jin Sook;Oh Seung Joon;Im Ki Chun;Chen Gi Jeong;Lee So Ryung;Song Do Young;Im Soo Jeong;Moon Eun Sook;Kim Jong Hoon;Ahn Seung Do;Shin Seong Soo;Lee Kyeong Ryong
    • Radiation Oncology Journal
    • /
    • v.22 no.4
    • /
    • pp.288-297
    • /
    • 2004
  • Puporse: The aims of this study were to evaluate the change of $[^18F]fluoromisonidazole$($[^18F]FMISO$) uptake in C3H mouse squamous cell carcinoma-VII (SCC-VII) treated with mild hyperthermia ($42^{circ}C$) and nicotinamide and to assess the biodistribution of the markers in normal tissues under similar conditions. Methods and Materials: $[^18F]FMISO$ was producedby our hospital. Female C3H mice with a C3H SCC-VII tumor grown on their extremities were used. Tumors were size matched. Non-anaesthetized, tumor-bearing mice underwent control or mild hyperthermia at $42^{circ}C$ for 60 min with nicotinamide (50 mg/kg i.p. injected) and were examined by gamma counter, autoradiography and animal PET scan 3 hours after tracer i.v. injected with breathing room air, The biodistribution of these agents were obtained at 3 h after $[^18F]FMISO$ injection. Blood, tumor, muscle, heart, lung, liver, kidney, brain, bone, spleen, and intestine were removed, counted for radioactivity and weighed. The tumor and liver were frozen and cut with a cryomicrotome into 10- um sections. The spatial distribution of radioactivity from the tissue sections was determined with digital autoradiography. Results: The mild hyperthermia with nicotinamide treatment had only slight effects on the biodistribution of either marker in normal tissues. We observed that the whole tumor radioactivity uptake ratios were higher in the control mice than in the mild hyperthermia with nicotinamide treated mice for $[^18F]FMISO$ ($1.56{\pm}1.03$ vs. $0.67{\pm}0.30$; p=0.063). In addition, autoradiography and animal PET scan demonstrated that the area and intensity of $[^18F]FMISO$ uptake was significantly decreased. Conclusion: Mild hyperthermla and nicotinamide significantly improved tumor hypoxia using $[^18F]FMISO$ and this uptake reflected tumor hypoxic status.

[18F]Labeled 2-nitroimidazole derivatives for hypoxia imaging

  • Seelam, Sudhakara Reddy;Lee, Yun-Sang;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.2
    • /
    • pp.73-83
    • /
    • 2016
  • Imaging hypoxia using positron emission tomography (PET) is of great importance for cancer therapy. [$^{18}F$] Fluoromisonidazole (FMISO) was the first PET agent used for imaging tumor hypoxia. Various radiolabeled nitroimidazole derivatives such as [$^{18}F$]fluoroerythronitroimidazole (FETNIM), [$^{18}F$]1-${\alpha}$-D-(2-deoxy-2-fluoroarabinofuranosyl)-2-nitroimidazole(FAZA), 2-(2-nitroimidazol-1-yl)-N-(3,3,3-[18F]-trifluoropropyl)acetamide ([$^{18}F$]EF-3), [$^{18}F$]2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide (EF-5), 3-[$^{18}F$]fluoro-2-(4-((2-nitro-1H-imidazol-1-yl)methyl)-1H-1,2,3,-triazol-1-yl)-propan-1-ol ([$^{18}F$]HX-4), and [$^{18}F$]fluoroetanidazole (FETA) were developed successively. However, these imaging agents still produce PET images with limited resolution; the lower blood flow in hypoxic tumors compared to normoxic tumors results in low uptake of the agents in hypoxic tumors. Thus, the development of better imaging agents is necessary.

Gamma scintigraphy in sensing drug delivery systems

  • Arif Nadaf;Umme Jiba;Arshi Chaudhary;Nazeer Hasan;Mohammad Adil;Yousuf Hussain Mohammed;Prashant Kesharwani;Gaurav Kumar jain;Farhan Jalees Ahmad
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4423-4436
    • /
    • 2024
  • The development and assessment of pharmaceutical dosage forms make considerable use of gamma-scintigraphy. Gamma scintigraphy is an imaging technique that is integrated with CT to assess and evaluate the targeting of drugs to various delivery sites, the impact of treatment, and the severity of the disease. A small number of radioisotopes were tagged with the delivery system and emitted radiation can be visualized by the gamma camera which forms a 2-D image displaying the tissue-specific distribution of radioactivity. The isotopes that are used widely include Technetium-99 m (99Tc), Iodine (131I), Fluorodeoxyglucose (18F-FDG), Fluoromisonidazole (18F-FMISO) and Gallium (Ga67), Indium (111In). This review mainly covers different applications of gamma scintigraphy for the assessment of drug targeting via different routes to different organs and their visualization by gamma scintigraphy. The review mainly focuses assessment of drug targeting in the tumor tissue, thyroid gland, brain, pulmonary pathway, skin deposition, detection of renal impairment as well as cardiac diseases, drug release from formulations, drug deposition in arthritis, drug retention in the scalp, and behavior of formulation when administered via intra-vaginal route. Various pre-clinical and clinical studies were included in the review that demonstrates the importance and future of gamma scintigraphy in sensing drug delivery.