References
- D. Sushmaa Muchukota, M. Kumar, and A. Rain, "A BRIEF review on gamma scintigraphy for analysis of controlled release dosage forms department of Pharmaceutics, Gautham college of pharmacy, 2 Dr. Sushmaa Muchukota 2 Department of Pharm D Gautham College of pharmacy,* 3 Pharm D (1 ST YEAR) Gautham Coll," vol. 2.
- F. Man, T. Lammers, R.T.M. de Rosales, Imaging nanomedicine-based drug delivery: a review of clinical studies, Mol. Imag. Biol. 20 (5) (Oct. 2018) 683-695, https://doi.org/10.1007/S11307-018-1255-2/FIGURES/4.
- N. Hasan, et al., Intranasal delivery of Naloxone-loaded solid lipid nanoparticles as a promising simple and non-invasive approach for the management of opioid overdose, Int. J. Pharm. 599 (Apr. 2021), https://doi.org/10.1016/j.ijpharm.2021.120428.
- U.A. Khan, et al., Parenteral sustained release lipid phase-transition system of ziprasidone: fabrication and evaluation for schizophrenia therapy, Drug Des. Dev. Ther. (2020), https://doi.org/10.2147/DDDT.S247196.
- S. Basu, et al., Numerical evaluation of spray position for improved nasal drug delivery, Sci. Rep. 10 (1) (2020) 1-18, https://doi.org/10.1038/s41598-020-66716-0.
- S.S. Davis, J.G. Hardy, S.P. Newman, I.R. Wilding, Gamma scintigraphy in the evaluation of pharmaceutical dosage forms, Eur. J. Nucl. Med. 19 (11) (Nov. 1992), https://doi.org/10.1007/BF00175865.
- J. Shen, D.J. Burgess, Advances in drug delivery related biosensors and medical devices, Int. J. Pharm. 544 (2) (Jun. 2018) 307-308, https://doi.org/10.1016/J.IJPHARM.2018.03.051.
- Q. Liu, B.J. Boyd, Liposomes in biosensors, Analyst 138 (2) (Dec. 2012) 391-409, https://doi.org/10.1039/C2AN36140J.
- P. Bhattarai, S. Hameed, Basics of biosensors and nanobiosensors, Nanobiosensors (Mar. 2020) 1-22, https://doi.org/10.1002/9783527345137.CH1.
- N. Gu, S. Liu, Introduction to Biosensors, pubs.rsc.org, 2020 [Online]. Available: https://pubs.rsc.org/en/content/articlehtml/2020/tb/d0tb90051f. (Accessed 11 December 2022).
- S. S.-B. composites in electronics and undefined 2017, "Development of biosensors from biopolymer composites," Elsevier, Accessed: December. 11, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780128092613000139.
- M. Ngoepe, et al., Integration of biosensors and drug delivery technologies for early detection and chronic management of illness, mdpi.com 13 (2013) 7680-7713, https://doi.org/10.3390/s130607680.
- S. Bahl, A.K. Bagha, S. Rab, M. Javaid, A. Haleem, R.P. Singh, Advancements in Biosensor Technologies for Medical Field and COVID-19 Pandemic 6 (2) (Mar. 2021) 175-191, https://doi.org/10.1142/S2424862221500081, 10.1142/S2424862221500081.
- M. Babar, I. Cicha, R. Priefer, P. Severino, E.B. Souto, S. Jain, Biosensor-integrated drug delivery systems as new materials for biomedical applications, mdpi.com (2022), https://doi.org/10.3390/biom12091198.
- J. Yu, Y. Zhang, J. Yan, A. Kahkoska, Z.G.-I. journal of, Advances in Bioresponsive Closed-Loop Drug Delivery Systems, Elsevier, and undefined 2018. https://www.sciencedirect.com/science/article/pii/S0378517317311195. (Accessed 11 December 2022).
- A. Singh, et al., Recent advances in electrochemical biosensors: applications, challenges, and future scope, Biosensors 11 (9) (2021), https://doi.org/10.3390/BIOS11090336.
- P. Damborsky, J. Svitel, J. K.-E. in biochemistry, and undefined 2016, "Optical biosensors," portlandpress.com, Accessed: December. 11, 2022. [Online]. Available: https://portlandpress.com/essaysbiochem/article-abstract/60/1/91/78222.
- G. Rocchitta, et al., Enzyme biosensors for biomedical applications: strategies for safeguarding analytical performances in biological fluids, mdpi.com (2016), https://doi.org/10.3390/s16060780.
- S. Sultan, R. Nimal, S. Aftab, S. Kurbanoglu, A. Shah, S.A. Ozkan, Photoelectrochemical nanosensors, New Dev. Nanosensors Pharm. Anal. (Jan. 2019) 197-229, https://doi.org/10.1016/B978-0-12-816144-9.00007-9.
- M. Asal, O. Ozen, M. Sahinler, I.P.- Sensors, Recent developments in enzyme, DNA and immuno-based biosensors, mdpi.com (2018), https://doi.org/10.3390/s18061924 and undefined 2018.
- J. Zhang, J. Zhao, Immuno-biosensor. Nano-inspired Biosens, Protein Assay with Clin. Appl., Jan. 2019, pp. 115-137, https://doi.org/10.1016/B978-0-12-815053-5.00005-2.
- J. Chao, D. Zhu, Y. Zhang, L. Wang, C. Fan, DNA nanotechnology-enabled biosensors, Biosens. Bioelectron. 76 (Feb. 2016) 68-79, https://doi.org/10.1016/J.BIOS.2015.07.007.
- Y. Hua, J. Ma, D. Li, R.W.- Biosensors, undefined, DNA-based biosensors for the biochemical analysis: a review, mdpi.com (2022), https://doi.org/10.3390/bios12030183, 2022.
- M. P.- Materials and undefined, Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications, mdpi.com (2018), https://doi.org/10.3390/ma11030448, 2018.
- G. Acharya, A. Mitra, K. C. for diagnostics, undefined drug, and undefined. Nanosystems for Diagnostic Imaging, Biodetectors, and Biosensors, Elsevier, 2017 [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780323429788000103. (Accessed 11 December 2022).
- C.A. Ferreira, D. Ni, Z.T. Rosenkrans, W. Cai, Radionuclide-activated nanomaterials and their biomedical applications, Angew. Chem. Int. Ed. 58 (38) (Sep. 2019) 13232-13252, https://doi.org/10.1002/ANIE.201900594.
- D. Knottenbelt, K. Snalune, J. Kane, Clinical Equine Oncology, 2015.
- D. Ilem-Ozdemir, E. Gundogdu, M. E.-... of Nanoparticles, and undefined. Nuclear Medicine and Radiopharmaceuticals for Molecular Diagnosis, Elsevier, 2019. https://www.sciencedirect.com/science/article/pii/B9780128165065000176. (Accessed 11 December 2022).
- M. Vendelbo, L. Gormsen, N. J.-A. in Pharmacology, and undefined. Imaging in Pharmacogenetics, Elsevier, 2018. https://www.sciencedirect.com/science/article/pii/S1054358918300139. (Accessed 11 December 2022).
- A.L. Goldenhart, S. Senthilkumaran, "Nuclear Medicine Test," StatPearls, Dec. 2022, Accessed: Jun. 07, 2024. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK567749/.
- S.C. Vaz, F. Oliveira, K. Herrmann, P. Veit-Haibach, Nuclear medicine and molecular imaging advances in the 21st century, Br. J. Radiol. 93 (1110) (Jun. 2020), https://doi.org/10.1259/BJR.20200095.
- M. Mazaheri Tehrani, M. Erfani, M. Goudarzi, Inflammation scintigraphy imaging through a novel antimicrobial peptide labeled with technetium-99m in an animal model, Int. J. Radiat. Biol. (2022), https://doi.org/10.1080/09553002.2022.2110298.
- M. Khedr, H. Rashed, H. Farag, T.S.-B. chemistry, Rational Design of Some Substituted Phenyl Azanediyl (Bis) Methylene Phosphonic Acid Derivatives as Potential Anticancer Agents and Imaging Probes: Computational, Elsevier, undefined 2019 [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0045206819309630. (Accessed 11 December 2022).
- A.K. Kanduluru, M. Srinivasarao, C. Wayua, P.S. Low, Evaluation of a neurokinin-1 receptor-targeted technetium-99m conjugate for neuroendocrine cancer imaging, Mol. Imag. Biol. 22 (2) (Apr. 2020) 377-383, https://doi.org/10.1007/S11307-019-01391-W.
- S. Vidhyalakshmi, Anirudhan, L. Balasubramani, A feasibility study of sentinel lymph node biopsy in endometrial cancer using technetium 99m nanocolloid, Indian J. Surg. Oncol. 11 (4) (Dec. 2020) 699-704, https://doi.org/10.1007/S13193-019-01020-6.
- S. Son et al., "White blood cell labeling with Technetium-99m (99mTc) using red blood cell extracellular vesicles-mimetics," Elsevier, Accessed: December. 11, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1079979619302414.
- M.H. Aboumanei, H. Fayez, Intra-articular formulation of colchicine loaded nanoemulsion systems for enhanced locoregional drug delivery: in vitro characterization, 99mTc coupling and in vivo biodistribution studies, Drug Dev. Ind. Pharm. 47 (5) (2021) 770-777, https://doi.org/10.1080/03639045.2021.1934865.
- C. Jimenez, W. Erwin, B.C. Cancers, Targeted radionuclide therapy for patients with metastatic pheochromocytoma and paraganglioma: from low-specific-activity to high-specific-activity iodine-131, mdpi.com (2019) 2019, https://doi.org/10.3390/cancers11071018, and undefined.
- R. Fonti, M. Conson, S. D. V.-S. in oncology, and undefined, "PET/CT in Radiation Oncology,", Elsevier, 2019 [Online]. Available: https://www.sciencedirect.com/science/article/pii/S009377541930079X. (Accessed 11 December 2022).
- J.B. Tajra, J.U. Calegaro, A.P. De Paula, D. Bachour, D. Silveira, P207 67-Gallium citrate oral Scintigraphy evaluation in inflammatory activity in Crohn's disease: a new highlighter?, J. Crohn's Colitis, 13 (Supplement_1) (2019) S197-S198. doi:10.1093/ECCO-JCC/JJY222.331.
- Nanotechnologies for early diagnosis, in situ disease monitoring, and prevention," Elsevier, Accessed: December. 11, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780323480635000010.
- I.G. Panyutin, Labeling peptide nucleic acids with indium-111, Methods Mol. Biol. 1973 (2019) 185-191, https://doi.org/10.1007/978-1-4939-9216-4_12.
- F. Rezazadeh, N. Sadeghzadeh, Tumor targeting with 99mTc radiolabeled peptides: clinical application and recent development, Chem. Biol. Drug Des. 93 (3) (Mar. 2019) 205-221, https://doi.org/10.1111/CBDD.13413.
- O. Schillaci, et al., Somatostatin receptor scintigraphy in liver metastasis detection from gastroenteropancreatic neuroendocrine tumors, J. Nucl. Med. 44 (2003) 359-368.
- P. Shende, S. Gandhi, Current strategies of radiopharmaceuticals in theranostic applications, J. Drug Deliv. Sci. Technol. 64 (Aug. 2021) 102594, https://doi.org/10.1016/J.JDDST.2021.102594.
- M. Kapoor, A. Kasi, Octreotide Scan, 2022.
- Y. Ichikawa, N. Kobayashi, S. Takano, I. Kato, K. Endo, T. Inoue, Neuroendocrine tumor theranostics, Cancer Sci. 113 (6) (Jun. 2022) 1930-1938, https://doi.org/10.1111/CAS.15327.
- F. Kraeber-Bodere, et al., Tumor immunotargeting using innovative radionuclides, Int. J. Mol. Sci. 16 (2) (Feb. 2015) 3932-3954, https://doi.org/10.3390/ijms16023932.
- A. Imhof, et al., Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers, J. Clin. Oncol. 29 (17) (Jun. 2011) 2416-2423, https://doi.org/10.1200/JCO.2010.33.7873.
- D. Narayanan, W.A. Berg, Dedicated breast gamma camera imaging and breast PET, Pet. Clin. 13 (3) (Jul. 2018) 363-381, https://doi.org/10.1016/j.cpet.2018.02.008.
- N. Bhatia, V.K. Dhingra, S. Kumari, D.K. Dhawan, V.D. Chadha, Efficacy of dual use of Tc-99m-pertechnetate and Tc-99m-tetrofosmin scintigraphy for the assessment of thyroid nodules, J. Med. Imaging Radiat. Oncol. 64 (2) (Apr. 2020) 189-196, https://doi.org/10.1111/1754-9485.13006.
- A. Gupta, et al., 99mTc-Methionine gold nanoparticles as a promising biomaterial for enhanced tumor imaging, J. Pharmaceut. Sci. 110 (2) (Feb. 2021) 888-897, https://doi.org/10.1016/j.xphs.2020.11.008.
- M.A. Khedr, H.M. Rashed, H. Farag, T.M. Sakr, Rational design of some substituted phenyl azanediyl (bis) methylene phosphonic acid derivatives as potential anticancer agents and imaging probes: computational inputs, chemical synthesis, radiolabeling, biodistribution and gamma scintigraphy, Bioorg. Chem. 92 (Nov. 2019) 103282, https://doi.org/10.1016/j.bioorg.2019.103282.
- J. Moya Sanchez, et al., Minigammacamara portatil para el diagnostico de muerte encefalica, Med. Intensiva 44 (1) (Jan. 2020) 1-8, https://doi.org/10.1016/j.medin.2018.07.013.
- P.J. Nestor, et al., Clinical utility of FDG-PET for the differential diagnosis among the main forms of dementia, Eur. J. Nucl. Med. Mol. Imag. 45 (9) (Jul. 2018) 1509-1525, https://doi.org/10.1007/s00259-018-4035-y.
- N.R. Evans, J.M. Tarkin, J.R. Buscombe, H.S. Markus, J.H.F. Rudd, E. A. Warburton, PET imaging of the neurovascular interface in cerebrovascular disease, Nat. Rev. Neurol. 13 (11) (Nov. 2017) 676-688, https://doi.org/10.1038/nrneurol.2017.129.
- M. Kumar, et al., Enhancement in brain uptake of vitamin D nanoemulsion for treatment of cerebral ischemia: formulation, gamma scintigraphy and efficacy study in transient middle cerebral artery occlusion rat models, J. Microencapsul. 37 (7) (Oct. 2020) 492-501, https://doi.org/10.1080/02652048.2020.1801870.
- P. Shah, et al., Lamotrigine loaded PLGA nanoparticles intended for direct nose to brain delivery in epilepsy: pharmacokinetic, pharmacodynamic and scintigraphy study, Artif. Cells, Nanomed. Biotechnol. 49 (1) (Jan. 2021) 511-522, https://doi.org/10.1080/21691401.2021.1939709.
- K. Nigam, et al., Nose-to-brain delivery of lamotrigine-loaded PLGA nanoparticles, Drug Deliv. Transl. Res. 9 (5) (Oct. 2019) 879-890, https://doi.org/10.1007/S13346-019-00622-5.
- S. Ahmed, S. Mahmood, M. Danish Ansari, A. Gull, N. Sharma, Y. Sultana, Nanostructured lipid carrier to overcome stratum corneum barrier for the delivery of agomelatine in rat brain; formula optimization, characterization and brain distribution study, Int. J. Pharm. 607 (Sep. 2021) 121006, https://doi.org/10.1016/j.ijpharm.2021.121006.
- J. Puttemans, et al., Preclinical targeted α- and β- -radionuclide therapy in HER2-positive brain metastasis using camelid single-domain antibodies, Cancers 12 (4) (Apr. 2020) 1017, https://doi.org/10.3390/cancers12041017.
- B. Shah, D. Khunt, M. Misra, H. Padh, Formulation and in-vivo pharmacokinetic consideration of intranasal microemulsion and mucoadhesive microemulsion of rivastigmine for brain targeting, Pharm. Res. (N. Y.) 35 (1) (Jan. 2018) 8, https://doi.org/10.1007/s11095-017-2279-z.
- K. Khanna, et al., Intranasal solid lipid nanoparticles for management of pain: a full factorial design approach, characterization & Gamma Scintigraphy, Chem. Phys. Lipids 236 (May 2021) 105060, https://doi.org/10.1016/j.chemphyslip.2021.105060.
- M. Yamada, M. Yoshita, M. Samuraki, J. Komatsu, K. Nakajima, 123I-metaiodobenzylguanidine myocardial scintigraphy in dementia with lewy bodies, Dement. with Lewy Bodies Clin. Biol. Asp. (Jan. 2016) 157-170, https://doi.org/10.1007/978-4-431-55948-1_12/COVER.
- M. Abbasi, et al., Potential diagnostic value of 131I-MIBG myocardial scintigraphy in discrimination between Alzheimer disease and dementia with Lewy bodies, Clin. Neurol. Neurosurg. 163 (Dec. 2017) 163-166, https://doi.org/10.1016/J.CLINEURO.2017.10.024.
- L.C. Fonseca, et al., Intranasal drug delivery for treatment of Alzheimer's disease, Drug Deliv. Transl. Res. 11 (2) (Apr. 2021) 411-425, https://doi.org/10.1007/S13346-021-00940-7/METRICS.
- B.L. Laube, R. Katz, G.M. Loughlin, J.M. Pinto, M.A. Lefton-Greif, Quantification of the source, amount and duration of aspiration in the lungs of infants using gamma scintigraphy, Paediatr. Respir. Rev. 32 (Nov. 2019) 23-27, https://doi.org/10.1016/J.PRRV.2019.03.006.
- S. Mairinger, I. Hernandez-Lozano, M. Zeitlinger, C. Ehrhardt, O. Langer, Nuclear medicine imaging methods as novel tools in the assessment of pulmonary drug disposition, 10.1080/17425247.2022.2137143 19 (12) (2022) 1561-1575, https://doi.org/10.1080/17425247.2022.2137143.
- A. Sanchez-Crespo, Lung scintigraphy in the assessment of aerosol deposition and clearance, Semin. Nucl. Med. 49 (1) (Jan. 2019) 47-57, https://doi.org/10.1053/j.semnuclmed.2018.10.015.
- B.L. Laube, Imaging aerosol deposition with two-dimensional gamma scintigraphy, J. Aerosol Med. Pulm. Drug Deliv. (Nov. 2022), https://doi.org/10.1089/jamp.2022.29072.bll.
- Y. Montigaud, et al., Nebulised gadolinium-based nanoparticles for a multimodal approach: quantitative and qualitative lung distribution using magnetic resonance and scintigraphy imaging in isolated ventilated porcine lungs, Int. J. Nanomed. 15 (Sep. 2020) 7251-7262, https://doi.org/10.2147/IJN.S260640.
- Bhavna, et al., Nano-salbutamol dry powder inhalation: a new approach for treating broncho-constrictive conditions, Eur. J. Pharm. Biopharm. 71 (2) (Feb. 2009) 282-291, https://doi.org/10.1016/j.ejpb.2008.09.018.
- H.S. Dengler, et al., Lung-restricted inhibition of Janus kinase 1 is effective in rodent models of asthma, Sci. Transl. Med. 10 (468) (Nov. 2018), https://doi.org/10.1126/scitranslmed.aao2151.
- R. Zhu, et al., Phase I and scintigraphy studies to evaluate safety, tolerability, pharmacokinetics, and lung deposition of inhaled GDC-0214 in healthy volunteers, Clin. Transl. Sci. 15 (5) (May 2022) 1225-1237, https://doi.org/10.1111/cts.13240.
- E.-O. Essien, P. Rali, S.C. Mathai, Pulmonary embolism, Med. Clin. 103 (3) (May 2019) 549-564, https://doi.org/10.1016/j.mcna.2018.12.013.
- H. Mirza, M.F. Hashmi, Lung Ventilation Perfusion Scan (VQ Scan), 2022.
- A.J. Burbank, et al., Gamma tocopherol-enriched supplement reduces sputum eosinophilia and endotoxin-induced sputum neutrophilia in volunteers with asthma, J. Allergy Clin. Immunol. 141 (4) (Apr. 2018) 1231-1238.e1, https://doi.org/10.1016/j.jaci.2017.06.029.
- P.S. Lai, et al., School Endotoxin Exposure and Asthma Morbidity in Inner-City Children, 2015, https://doi.org/10.1378/chest.15-0098.
- O. Usmani, et al., A scintigraphy study of budesonide/glycopyrrolate/formoterol fumarate metered dose inhaler in patients with moderate-to-very severe chronic obstructive pulmonary disease, Respir. Res. 22 (1) (Dec. 2021) 261, https://doi.org/10.1186/s12931-021-01813-w.
- J. Furin, H. Cox, M. Pai, Tuberculosis, Lancet 393 (10181) (Apr. 2019) 1642-1656, https://doi.org/10.1016/S0140-6736(19)30308-3.
- A.H.S. Kartamihardja, Y. Kurniawati, R. Gunawan, Diagnostic value of 99mTcethambutol scintigraphy in tuberculosis: compared to microbiological and histopathological tests, Ann. Nucl. Med. 32 (1) (Jan. 2018) 60-68, https://doi.org/10.1007/s12149-017-1220-1.
- J.E. Kusmirek, J.D. Magnusson, S.B. Perlman, Current applications for nuclear medicine imaging in pulmonary disease, Curr. Pulmonol. reports 9 (3) (2020) 82-95, https://doi.org/10.1007/s13665-020-00251-1.
- N. Tregay, et al., Use of autologous 99mTechnetium-labelled neutrophils to quantify lung neutrophil clearance in COPD, Thorax 74 (7) (Jul. 2019) 659, https://doi.org/10.1136/THORAXJNL-2018-212509.
- S. Nobili, et al., Vinorelbine in non-small cell lung cancer: real-world data from a single-institution experience, Oncol. Res. 28 (3) (2020) 237, https://doi.org/10.3727/096504019X15755437099308.
- R. Dhande, A. Tyagi, R.K. Sharma, H. Thakkar, 99m Tc-vinorelbine tartrate loaded spherulites: lung disposition study in Sprague-Dawley rats by gamma scintigraphy, Pulm. Pharmacol. Ther. 49 (Apr. 2018) 36-45, https://doi.org/10.1016/j.pupt.2018.01.002.
- B.A. Kuzma, I.J. Pence, D.A. Greenfield, A. Ho, C.L. Evans, Visualizing and quantifying antimicrobial drug distribution in tissue, Adv. Drug Deliv. Rev. 177 (Oct. 2021) 113942, https://doi.org/10.1016/J.ADDR.2021.113942.
- V. Gupta, K. Chuttani, A.K. Mishra, P. Trivedi, Topical delivery of fluorescence (6-Cf) labeled and radiolabeled (99m-Tc) cisplatin and imiquimod by a dual drug delivery system, J. Label. Compd. Radiopharm. 57 (6) (May 2014) 425-433, https://doi.org/10.1002/JLCR.3201.
- C.-C. Ke et al., "Quantitative Measurement of the Thyroid Uptake Function of Mouse by Cerenkov Luminescence Imaging," doi: 10.1038/s41598-017-05516-5.
- C.D. Ramos, D.E. Zantut Wittmann, E.C. Sa ' De Camargo Etchebehere, M. A. Tambascia, C.A. Moreira Silva, E.E. Camargo, Thyroid uptake and scintigraphy using 99mTc pertechnetate: standardization in normal individuals, Sao Paulo Med. J. 120 (2) (2002) 45-48, https://doi.org/10.1590/S1516-31802002000200004.
- D.E. Zantut-Wittmann, et al., High pre-therapy [ 99m tc]pertechnetate thyroid uptake, thyroid size and thyrostatic drugs: predictive factors of failure in [i]iodide therapy in graves' disease, Nucl. Med. Commun. 26 (11) (2005) 957-963, https://doi.org/10.1097/01.MNM.0000183795.59097.42.
- P. Kumar, A.L. Ganure, B.B. Subudhi, S. Shukla, Design and comparative evaluation of in-vitro drug release, pharmacokinetics and gamma scintigraphic analysis of controlled release tablets using novel pH sensitive starch and modified starch- acrylate graft copolymer matrices, Iran. J. Pharm. Res. IJPR 14 (3) (Mar. 2015) 677. (Accessed 12 December 2022).
- H. Gupta, M. Aqil, R.K. Khar, A. Ali, A. Bhatnagar, G. Mittal, Biodegradable levofloxacin nanoparticles for sustained ocular drug delivery, 10.3109/1061186X.2010.504268 19 (6) (Jul. 2011) 409-417, https://doi.org/10.3109/1061186X.2010.504268.
- L. Xing, C. Dawei, X. Liping, Z. Rongqing, Oral colon-specific drug delivery for bee venom peptide: development of a coated calcium alginate gel beadsentrapped liposome, J. Contr. Release 93 (3) (Dec. 2003) 293-300, https://doi.org/10.1016/J.JCONREL.2003.08.019.
- S. Piszczek, S. Osiecki, E. Witkowska-Patena, A. Mazurek, P. Kwasiborski, M. Dziuk, The diagnostic efficacy and safety of stress-only supine and prone myocardial perfusion imaging with a dedicated cardiac gamma camera in patients with suspected or known coronary artery disease, Nucl. Med. Rev. Cent. E Eur. 21 (2) (Jul. 2018) 104-108, https://doi.org/10.5603/NMR.2018.0028.
- S. Mishra, et al., Improved intervention of atherosclerosis and cardiac hypertrophy through biodegradable polymer-encapsulated delivery of glycosphingolipid inhibitor, Biomaterials 64 (Sep. 2015) 125-135, https://doi.org/10.1016/J.BIOMATERIALS.2015.06.001.
- S. Turker, et al., Scintigraphic imaging of radiolabelled drug delivery systems in rabbits with arthritis, Int. J. Pharm. 296 (1-2) (May 2005) 34-43, https://doi.org/10.1016/J.IJPHARM.2005.02.017.
- J.E. Manning, J.W. Lewis, L.J. Marsh, H.M. McGettrick, Insights into leukocyte trafficking in inflammatory arthritis - imaging the joint, Front. Cell Dev. Biol. 9 (Mar. 2021) 635102, https://doi.org/10.3389/FCELL.2021.635102/BIBTEX.
- C.M. Paulos, M.J. Turk, G.J. Breur, P.S. Low, Folate receptor-mediated targeting of therapeutic and imaging agents to activated macrophages in rheumatoid arthritis, Adv. Drug Deliv. Rev. 56 (8) (Apr. 2004) 1205-1217, https://doi.org/10.1016/J.ADDR.2004.01.012.
- M.A. Momin, M.N.A. Abdullah, M.S. Reza, Comparison of relative renal functions calculated with 99mTc-DTPA and 99mTc-DMSA for kidney patients of wide age ranges, Phys. Med. 45 (Jan. 2018) 99-105, https://doi.org/10.1016/J.EJMP.2017.12.005.
- Q. Li, D. Wang, X. Zhu, K. Shen, F. Xu, Y. Chen, Combination of renal apparent diffusion coefficient and renal parenchymal volume for better assessment of split renal function in chronic kidney disease, Eur. J. Radiol. 108 (Nov. 2018) 194-200, https://doi.org/10.1016/J.EJRAD.2018.10.002.
- G. Arora, A. Mishra, Gaurav, N. Chandra, P. Kesharwani, G.K. Jain, In vitro and in vivo scalp retention and penetration of 99mTc-minoxidil solution, J. Pharmaceut. Sci. (Sep. 2022), https://doi.org/10.1016/J.XPHS.2022.09.016.
- S. Mehta, et al., Vaginal distribution and retention of a multiparticulate drug delivery system, assessed by gamma scintigraphy and magnetic resonance imaging, Int. J. Pharm. 426 (1-2) (Apr. 2012) 44-53, https://doi.org/10.1016/J.IJPHARM.2012.01.006.
- A. Kaur et al., "Intravaginal Delivery of Polyphenon 60 and Curcumin Nanoemulsion Gel," doi: 10.1208/s12249-016-0652-6.
- A. Patel, A. Tyagi, R.K. Sharma, H. Thakkar, A gamma scintigraphy study to investigate uterine targeting efficiency of raloxifene-loaded liposomes administered intravaginally in New Zealand white female rabbits, Drug Deliv. 23 (9) (Nov. 2016) 3330-3338, https://doi.org/10.1080/10717544.2016.1177137.
- A. Kaur, et al., Development of nanoemulsion based gel loaded with phytoconstituents for the treatment of urinary tract infection and in vivo biodistribution studies, Adv. Pharmaceut. Bull. 7 (4) (2017) 611-619, https://doi.org/10.15171/APB.2017.073.
- P.V. Pople, K.K. Singh, Development and evaluation of colloidal modified nanolipid carrier: application to topical delivery of tacrolimus, Eur. J. Pharm. Biopharm. 79 (1) (Sep. 2011) 82-94, https://doi.org/10.1016/J.EJPB.2011.02.016.