DOI QR코드

DOI QR Code

Gamma scintigraphy in sensing drug delivery systems

  • Arif Nadaf (Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard) ;
  • Umme Jiba (Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard) ;
  • Arshi Chaudhary (Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard) ;
  • Nazeer Hasan (Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard) ;
  • Mohammad Adil (Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard) ;
  • Yousuf Hussain Mohammed (Therapeutics Research Group, Frazer Institute, Faculty of Medicine, University of Queensland) ;
  • Prashant Kesharwani (Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard) ;
  • Gaurav Kumar jain (Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University) ;
  • Farhan Jalees Ahmad (Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard)
  • Received : 2023.03.30
  • Accepted : 2024.06.02
  • Published : 2024.10.25

Abstract

The development and assessment of pharmaceutical dosage forms make considerable use of gamma-scintigraphy. Gamma scintigraphy is an imaging technique that is integrated with CT to assess and evaluate the targeting of drugs to various delivery sites, the impact of treatment, and the severity of the disease. A small number of radioisotopes were tagged with the delivery system and emitted radiation can be visualized by the gamma camera which forms a 2-D image displaying the tissue-specific distribution of radioactivity. The isotopes that are used widely include Technetium-99 m (99Tc), Iodine (131I), Fluorodeoxyglucose (18F-FDG), Fluoromisonidazole (18F-FMISO) and Gallium (Ga67), Indium (111In). This review mainly covers different applications of gamma scintigraphy for the assessment of drug targeting via different routes to different organs and their visualization by gamma scintigraphy. The review mainly focuses assessment of drug targeting in the tumor tissue, thyroid gland, brain, pulmonary pathway, skin deposition, detection of renal impairment as well as cardiac diseases, drug release from formulations, drug deposition in arthritis, drug retention in the scalp, and behavior of formulation when administered via intra-vaginal route. Various pre-clinical and clinical studies were included in the review that demonstrates the importance and future of gamma scintigraphy in sensing drug delivery.

Keywords

References

  1. D. Sushmaa Muchukota, M. Kumar, and A. Rain, "A BRIEF review on gamma scintigraphy for analysis of controlled release dosage forms department of Pharmaceutics, Gautham college of pharmacy, 2 Dr. Sushmaa Muchukota 2 Department of Pharm D Gautham College of pharmacy,* 3 Pharm D (1 ST YEAR) Gautham Coll," vol. 2.
  2. F. Man, T. Lammers, R.T.M. de Rosales, Imaging nanomedicine-based drug delivery: a review of clinical studies, Mol. Imag. Biol. 20 (5) (Oct. 2018) 683-695, https://doi.org/10.1007/S11307-018-1255-2/FIGURES/4.
  3. N. Hasan, et al., Intranasal delivery of Naloxone-loaded solid lipid nanoparticles as a promising simple and non-invasive approach for the management of opioid overdose, Int. J. Pharm. 599 (Apr. 2021), https://doi.org/10.1016/j.ijpharm.2021.120428.
  4. U.A. Khan, et al., Parenteral sustained release lipid phase-transition system of ziprasidone: fabrication and evaluation for schizophrenia therapy, Drug Des. Dev. Ther. (2020), https://doi.org/10.2147/DDDT.S247196.
  5. S. Basu, et al., Numerical evaluation of spray position for improved nasal drug delivery, Sci. Rep. 10 (1) (2020) 1-18, https://doi.org/10.1038/s41598-020-66716-0.
  6. S.S. Davis, J.G. Hardy, S.P. Newman, I.R. Wilding, Gamma scintigraphy in the evaluation of pharmaceutical dosage forms, Eur. J. Nucl. Med. 19 (11) (Nov. 1992), https://doi.org/10.1007/BF00175865.
  7. J. Shen, D.J. Burgess, Advances in drug delivery related biosensors and medical devices, Int. J. Pharm. 544 (2) (Jun. 2018) 307-308, https://doi.org/10.1016/J.IJPHARM.2018.03.051.
  8. Q. Liu, B.J. Boyd, Liposomes in biosensors, Analyst 138 (2) (Dec. 2012) 391-409, https://doi.org/10.1039/C2AN36140J.
  9. P. Bhattarai, S. Hameed, Basics of biosensors and nanobiosensors, Nanobiosensors (Mar. 2020) 1-22, https://doi.org/10.1002/9783527345137.CH1.
  10. N. Gu, S. Liu, Introduction to Biosensors, pubs.rsc.org, 2020 [Online]. Available: https://pubs.rsc.org/en/content/articlehtml/2020/tb/d0tb90051f. (Accessed 11 December 2022).
  11. S. S.-B. composites in electronics and undefined 2017, "Development of biosensors from biopolymer composites," Elsevier, Accessed: December. 11, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780128092613000139.
  12. M. Ngoepe, et al., Integration of biosensors and drug delivery technologies for early detection and chronic management of illness, mdpi.com 13 (2013) 7680-7713, https://doi.org/10.3390/s130607680.
  13. S. Bahl, A.K. Bagha, S. Rab, M. Javaid, A. Haleem, R.P. Singh, Advancements in Biosensor Technologies for Medical Field and COVID-19 Pandemic 6 (2) (Mar. 2021) 175-191, https://doi.org/10.1142/S2424862221500081, 10.1142/S2424862221500081.
  14. M. Babar, I. Cicha, R. Priefer, P. Severino, E.B. Souto, S. Jain, Biosensor-integrated drug delivery systems as new materials for biomedical applications, mdpi.com (2022), https://doi.org/10.3390/biom12091198.
  15. J. Yu, Y. Zhang, J. Yan, A. Kahkoska, Z.G.-I. journal of, Advances in Bioresponsive Closed-Loop Drug Delivery Systems, Elsevier, and undefined 2018. https://www.sciencedirect.com/science/article/pii/S0378517317311195. (Accessed 11 December 2022).
  16. A. Singh, et al., Recent advances in electrochemical biosensors: applications, challenges, and future scope, Biosensors 11 (9) (2021), https://doi.org/10.3390/BIOS11090336.
  17. P. Damborsky, J. Svitel, J. K.-E. in biochemistry, and undefined 2016, "Optical biosensors," portlandpress.com, Accessed: December. 11, 2022. [Online]. Available: https://portlandpress.com/essaysbiochem/article-abstract/60/1/91/78222.
  18. G. Rocchitta, et al., Enzyme biosensors for biomedical applications: strategies for safeguarding analytical performances in biological fluids, mdpi.com (2016), https://doi.org/10.3390/s16060780.
  19. S. Sultan, R. Nimal, S. Aftab, S. Kurbanoglu, A. Shah, S.A. Ozkan, Photoelectrochemical nanosensors, New Dev. Nanosensors Pharm. Anal. (Jan. 2019) 197-229, https://doi.org/10.1016/B978-0-12-816144-9.00007-9.
  20. M. Asal, O. Ozen, M. Sahinler, I.P.- Sensors, Recent developments in enzyme, DNA and immuno-based biosensors, mdpi.com (2018), https://doi.org/10.3390/s18061924 and undefined 2018.
  21. J. Zhang, J. Zhao, Immuno-biosensor. Nano-inspired Biosens, Protein Assay with Clin. Appl., Jan. 2019, pp. 115-137, https://doi.org/10.1016/B978-0-12-815053-5.00005-2.
  22. J. Chao, D. Zhu, Y. Zhang, L. Wang, C. Fan, DNA nanotechnology-enabled biosensors, Biosens. Bioelectron. 76 (Feb. 2016) 68-79, https://doi.org/10.1016/J.BIOS.2015.07.007.
  23. Y. Hua, J. Ma, D. Li, R.W.- Biosensors, undefined, DNA-based biosensors for the biochemical analysis: a review, mdpi.com (2022), https://doi.org/10.3390/bios12030183, 2022.
  24. M. P.- Materials and undefined, Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications, mdpi.com (2018), https://doi.org/10.3390/ma11030448, 2018.
  25. G. Acharya, A. Mitra, K. C. for diagnostics, undefined drug, and undefined. Nanosystems for Diagnostic Imaging, Biodetectors, and Biosensors, Elsevier, 2017 [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780323429788000103. (Accessed 11 December 2022).
  26. C.A. Ferreira, D. Ni, Z.T. Rosenkrans, W. Cai, Radionuclide-activated nanomaterials and their biomedical applications, Angew. Chem. Int. Ed. 58 (38) (Sep. 2019) 13232-13252, https://doi.org/10.1002/ANIE.201900594.
  27. D. Knottenbelt, K. Snalune, J. Kane, Clinical Equine Oncology, 2015.
  28. D. Ilem-Ozdemir, E. Gundogdu, M. E.-... of Nanoparticles, and undefined. Nuclear Medicine and Radiopharmaceuticals for Molecular Diagnosis, Elsevier, 2019. https://www.sciencedirect.com/science/article/pii/B9780128165065000176. (Accessed 11 December 2022).
  29. M. Vendelbo, L. Gormsen, N. J.-A. in Pharmacology, and undefined. Imaging in Pharmacogenetics, Elsevier, 2018. https://www.sciencedirect.com/science/article/pii/S1054358918300139. (Accessed 11 December 2022).
  30. A.L. Goldenhart, S. Senthilkumaran, "Nuclear Medicine Test," StatPearls, Dec. 2022, Accessed: Jun. 07, 2024. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK567749/.
  31. S.C. Vaz, F. Oliveira, K. Herrmann, P. Veit-Haibach, Nuclear medicine and molecular imaging advances in the 21st century, Br. J. Radiol. 93 (1110) (Jun. 2020), https://doi.org/10.1259/BJR.20200095.
  32. M. Mazaheri Tehrani, M. Erfani, M. Goudarzi, Inflammation scintigraphy imaging through a novel antimicrobial peptide labeled with technetium-99m in an animal model, Int. J. Radiat. Biol. (2022), https://doi.org/10.1080/09553002.2022.2110298.
  33. M. Khedr, H. Rashed, H. Farag, T.S.-B. chemistry, Rational Design of Some Substituted Phenyl Azanediyl (Bis) Methylene Phosphonic Acid Derivatives as Potential Anticancer Agents and Imaging Probes: Computational, Elsevier, undefined 2019 [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0045206819309630. (Accessed 11 December 2022).
  34. A.K. Kanduluru, M. Srinivasarao, C. Wayua, P.S. Low, Evaluation of a neurokinin-1 receptor-targeted technetium-99m conjugate for neuroendocrine cancer imaging, Mol. Imag. Biol. 22 (2) (Apr. 2020) 377-383, https://doi.org/10.1007/S11307-019-01391-W.
  35. S. Vidhyalakshmi, Anirudhan, L. Balasubramani, A feasibility study of sentinel lymph node biopsy in endometrial cancer using technetium 99m nanocolloid, Indian J. Surg. Oncol. 11 (4) (Dec. 2020) 699-704, https://doi.org/10.1007/S13193-019-01020-6.
  36. S. Son et al., "White blood cell labeling with Technetium-99m (99mTc) using red blood cell extracellular vesicles-mimetics," Elsevier, Accessed: December. 11, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1079979619302414.
  37. M.H. Aboumanei, H. Fayez, Intra-articular formulation of colchicine loaded nanoemulsion systems for enhanced locoregional drug delivery: in vitro characterization, 99mTc coupling and in vivo biodistribution studies, Drug Dev. Ind. Pharm. 47 (5) (2021) 770-777, https://doi.org/10.1080/03639045.2021.1934865.
  38. C. Jimenez, W. Erwin, B.C. Cancers, Targeted radionuclide therapy for patients with metastatic pheochromocytoma and paraganglioma: from low-specific-activity to high-specific-activity iodine-131, mdpi.com (2019) 2019, https://doi.org/10.3390/cancers11071018, and undefined.
  39. R. Fonti, M. Conson, S. D. V.-S. in oncology, and undefined, "PET/CT in Radiation Oncology,", Elsevier, 2019 [Online]. Available: https://www.sciencedirect.com/science/article/pii/S009377541930079X. (Accessed 11 December 2022).
  40. J.B. Tajra, J.U. Calegaro, A.P. De Paula, D. Bachour, D. Silveira, P207 67-Gallium citrate oral Scintigraphy evaluation in inflammatory activity in Crohn's disease: a new highlighter?, J. Crohn's Colitis, 13 (Supplement_1) (2019) S197-S198. doi:10.1093/ECCO-JCC/JJY222.331.
  41. Nanotechnologies for early diagnosis, in situ disease monitoring, and prevention," Elsevier, Accessed: December. 11, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780323480635000010.
  42. I.G. Panyutin, Labeling peptide nucleic acids with indium-111, Methods Mol. Biol. 1973 (2019) 185-191, https://doi.org/10.1007/978-1-4939-9216-4_12.
  43. F. Rezazadeh, N. Sadeghzadeh, Tumor targeting with 99mTc radiolabeled peptides: clinical application and recent development, Chem. Biol. Drug Des. 93 (3) (Mar. 2019) 205-221, https://doi.org/10.1111/CBDD.13413.
  44. O. Schillaci, et al., Somatostatin receptor scintigraphy in liver metastasis detection from gastroenteropancreatic neuroendocrine tumors, J. Nucl. Med. 44 (2003) 359-368.
  45. P. Shende, S. Gandhi, Current strategies of radiopharmaceuticals in theranostic applications, J. Drug Deliv. Sci. Technol. 64 (Aug. 2021) 102594, https://doi.org/10.1016/J.JDDST.2021.102594.
  46. M. Kapoor, A. Kasi, Octreotide Scan, 2022.
  47. Y. Ichikawa, N. Kobayashi, S. Takano, I. Kato, K. Endo, T. Inoue, Neuroendocrine tumor theranostics, Cancer Sci. 113 (6) (Jun. 2022) 1930-1938, https://doi.org/10.1111/CAS.15327.
  48. F. Kraeber-Bodere, et al., Tumor immunotargeting using innovative radionuclides, Int. J. Mol. Sci. 16 (2) (Feb. 2015) 3932-3954, https://doi.org/10.3390/ijms16023932.
  49. A. Imhof, et al., Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers, J. Clin. Oncol. 29 (17) (Jun. 2011) 2416-2423, https://doi.org/10.1200/JCO.2010.33.7873.
  50. D. Narayanan, W.A. Berg, Dedicated breast gamma camera imaging and breast PET, Pet. Clin. 13 (3) (Jul. 2018) 363-381, https://doi.org/10.1016/j.cpet.2018.02.008.
  51. N. Bhatia, V.K. Dhingra, S. Kumari, D.K. Dhawan, V.D. Chadha, Efficacy of dual use of Tc-99m-pertechnetate and Tc-99m-tetrofosmin scintigraphy for the assessment of thyroid nodules, J. Med. Imaging Radiat. Oncol. 64 (2) (Apr. 2020) 189-196, https://doi.org/10.1111/1754-9485.13006.
  52. A. Gupta, et al., 99mTc-Methionine gold nanoparticles as a promising biomaterial for enhanced tumor imaging, J. Pharmaceut. Sci. 110 (2) (Feb. 2021) 888-897, https://doi.org/10.1016/j.xphs.2020.11.008.
  53. M.A. Khedr, H.M. Rashed, H. Farag, T.M. Sakr, Rational design of some substituted phenyl azanediyl (bis) methylene phosphonic acid derivatives as potential anticancer agents and imaging probes: computational inputs, chemical synthesis, radiolabeling, biodistribution and gamma scintigraphy, Bioorg. Chem. 92 (Nov. 2019) 103282, https://doi.org/10.1016/j.bioorg.2019.103282.
  54. J. Moya Sanchez, et al., Minigammacamara portatil para el diagnostico de muerte encefalica, Med. Intensiva 44 (1) (Jan. 2020) 1-8, https://doi.org/10.1016/j.medin.2018.07.013.
  55. P.J. Nestor, et al., Clinical utility of FDG-PET for the differential diagnosis among the main forms of dementia, Eur. J. Nucl. Med. Mol. Imag. 45 (9) (Jul. 2018) 1509-1525, https://doi.org/10.1007/s00259-018-4035-y.
  56. N.R. Evans, J.M. Tarkin, J.R. Buscombe, H.S. Markus, J.H.F. Rudd, E. A. Warburton, PET imaging of the neurovascular interface in cerebrovascular disease, Nat. Rev. Neurol. 13 (11) (Nov. 2017) 676-688, https://doi.org/10.1038/nrneurol.2017.129.
  57. M. Kumar, et al., Enhancement in brain uptake of vitamin D nanoemulsion for treatment of cerebral ischemia: formulation, gamma scintigraphy and efficacy study in transient middle cerebral artery occlusion rat models, J. Microencapsul. 37 (7) (Oct. 2020) 492-501, https://doi.org/10.1080/02652048.2020.1801870.
  58. P. Shah, et al., Lamotrigine loaded PLGA nanoparticles intended for direct nose to brain delivery in epilepsy: pharmacokinetic, pharmacodynamic and scintigraphy study, Artif. Cells, Nanomed. Biotechnol. 49 (1) (Jan. 2021) 511-522, https://doi.org/10.1080/21691401.2021.1939709.
  59. K. Nigam, et al., Nose-to-brain delivery of lamotrigine-loaded PLGA nanoparticles, Drug Deliv. Transl. Res. 9 (5) (Oct. 2019) 879-890, https://doi.org/10.1007/S13346-019-00622-5.
  60. S. Ahmed, S. Mahmood, M. Danish Ansari, A. Gull, N. Sharma, Y. Sultana, Nanostructured lipid carrier to overcome stratum corneum barrier for the delivery of agomelatine in rat brain; formula optimization, characterization and brain distribution study, Int. J. Pharm. 607 (Sep. 2021) 121006, https://doi.org/10.1016/j.ijpharm.2021.121006.
  61. J. Puttemans, et al., Preclinical targeted α- and β- -radionuclide therapy in HER2-positive brain metastasis using camelid single-domain antibodies, Cancers 12 (4) (Apr. 2020) 1017, https://doi.org/10.3390/cancers12041017.
  62. B. Shah, D. Khunt, M. Misra, H. Padh, Formulation and in-vivo pharmacokinetic consideration of intranasal microemulsion and mucoadhesive microemulsion of rivastigmine for brain targeting, Pharm. Res. (N. Y.) 35 (1) (Jan. 2018) 8, https://doi.org/10.1007/s11095-017-2279-z.
  63. K. Khanna, et al., Intranasal solid lipid nanoparticles for management of pain: a full factorial design approach, characterization & Gamma Scintigraphy, Chem. Phys. Lipids 236 (May 2021) 105060, https://doi.org/10.1016/j.chemphyslip.2021.105060.
  64. M. Yamada, M. Yoshita, M. Samuraki, J. Komatsu, K. Nakajima, 123I-metaiodobenzylguanidine myocardial scintigraphy in dementia with lewy bodies, Dement. with Lewy Bodies Clin. Biol. Asp. (Jan. 2016) 157-170, https://doi.org/10.1007/978-4-431-55948-1_12/COVER.
  65. M. Abbasi, et al., Potential diagnostic value of 131I-MIBG myocardial scintigraphy in discrimination between Alzheimer disease and dementia with Lewy bodies, Clin. Neurol. Neurosurg. 163 (Dec. 2017) 163-166, https://doi.org/10.1016/J.CLINEURO.2017.10.024.
  66. L.C. Fonseca, et al., Intranasal drug delivery for treatment of Alzheimer's disease, Drug Deliv. Transl. Res. 11 (2) (Apr. 2021) 411-425, https://doi.org/10.1007/S13346-021-00940-7/METRICS.
  67. B.L. Laube, R. Katz, G.M. Loughlin, J.M. Pinto, M.A. Lefton-Greif, Quantification of the source, amount and duration of aspiration in the lungs of infants using gamma scintigraphy, Paediatr. Respir. Rev. 32 (Nov. 2019) 23-27, https://doi.org/10.1016/J.PRRV.2019.03.006.
  68. S. Mairinger, I. Hernandez-Lozano, M. Zeitlinger, C. Ehrhardt, O. Langer, Nuclear medicine imaging methods as novel tools in the assessment of pulmonary drug disposition, 10.1080/17425247.2022.2137143 19 (12) (2022) 1561-1575, https://doi.org/10.1080/17425247.2022.2137143.
  69. A. Sanchez-Crespo, Lung scintigraphy in the assessment of aerosol deposition and clearance, Semin. Nucl. Med. 49 (1) (Jan. 2019) 47-57, https://doi.org/10.1053/j.semnuclmed.2018.10.015.
  70. B.L. Laube, Imaging aerosol deposition with two-dimensional gamma scintigraphy, J. Aerosol Med. Pulm. Drug Deliv. (Nov. 2022), https://doi.org/10.1089/jamp.2022.29072.bll.
  71. Y. Montigaud, et al., Nebulised gadolinium-based nanoparticles for a multimodal approach: quantitative and qualitative lung distribution using magnetic resonance and scintigraphy imaging in isolated ventilated porcine lungs, Int. J. Nanomed. 15 (Sep. 2020) 7251-7262, https://doi.org/10.2147/IJN.S260640.
  72. Bhavna, et al., Nano-salbutamol dry powder inhalation: a new approach for treating broncho-constrictive conditions, Eur. J. Pharm. Biopharm. 71 (2) (Feb. 2009) 282-291, https://doi.org/10.1016/j.ejpb.2008.09.018.
  73. H.S. Dengler, et al., Lung-restricted inhibition of Janus kinase 1 is effective in rodent models of asthma, Sci. Transl. Med. 10 (468) (Nov. 2018), https://doi.org/10.1126/scitranslmed.aao2151.
  74. R. Zhu, et al., Phase I and scintigraphy studies to evaluate safety, tolerability, pharmacokinetics, and lung deposition of inhaled GDC-0214 in healthy volunteers, Clin. Transl. Sci. 15 (5) (May 2022) 1225-1237, https://doi.org/10.1111/cts.13240.
  75. E.-O. Essien, P. Rali, S.C. Mathai, Pulmonary embolism, Med. Clin. 103 (3) (May 2019) 549-564, https://doi.org/10.1016/j.mcna.2018.12.013.
  76. H. Mirza, M.F. Hashmi, Lung Ventilation Perfusion Scan (VQ Scan), 2022.
  77. A.J. Burbank, et al., Gamma tocopherol-enriched supplement reduces sputum eosinophilia and endotoxin-induced sputum neutrophilia in volunteers with asthma, J. Allergy Clin. Immunol. 141 (4) (Apr. 2018) 1231-1238.e1, https://doi.org/10.1016/j.jaci.2017.06.029.
  78. P.S. Lai, et al., School Endotoxin Exposure and Asthma Morbidity in Inner-City Children, 2015, https://doi.org/10.1378/chest.15-0098.
  79. O. Usmani, et al., A scintigraphy study of budesonide/glycopyrrolate/formoterol fumarate metered dose inhaler in patients with moderate-to-very severe chronic obstructive pulmonary disease, Respir. Res. 22 (1) (Dec. 2021) 261, https://doi.org/10.1186/s12931-021-01813-w.
  80. J. Furin, H. Cox, M. Pai, Tuberculosis, Lancet 393 (10181) (Apr. 2019) 1642-1656, https://doi.org/10.1016/S0140-6736(19)30308-3.
  81. A.H.S. Kartamihardja, Y. Kurniawati, R. Gunawan, Diagnostic value of 99mTcethambutol scintigraphy in tuberculosis: compared to microbiological and histopathological tests, Ann. Nucl. Med. 32 (1) (Jan. 2018) 60-68, https://doi.org/10.1007/s12149-017-1220-1.
  82. J.E. Kusmirek, J.D. Magnusson, S.B. Perlman, Current applications for nuclear medicine imaging in pulmonary disease, Curr. Pulmonol. reports 9 (3) (2020) 82-95, https://doi.org/10.1007/s13665-020-00251-1.
  83. N. Tregay, et al., Use of autologous 99mTechnetium-labelled neutrophils to quantify lung neutrophil clearance in COPD, Thorax 74 (7) (Jul. 2019) 659, https://doi.org/10.1136/THORAXJNL-2018-212509.
  84. S. Nobili, et al., Vinorelbine in non-small cell lung cancer: real-world data from a single-institution experience, Oncol. Res. 28 (3) (2020) 237, https://doi.org/10.3727/096504019X15755437099308.
  85. R. Dhande, A. Tyagi, R.K. Sharma, H. Thakkar, 99m Tc-vinorelbine tartrate loaded spherulites: lung disposition study in Sprague-Dawley rats by gamma scintigraphy, Pulm. Pharmacol. Ther. 49 (Apr. 2018) 36-45, https://doi.org/10.1016/j.pupt.2018.01.002.
  86. B.A. Kuzma, I.J. Pence, D.A. Greenfield, A. Ho, C.L. Evans, Visualizing and quantifying antimicrobial drug distribution in tissue, Adv. Drug Deliv. Rev. 177 (Oct. 2021) 113942, https://doi.org/10.1016/J.ADDR.2021.113942.
  87. V. Gupta, K. Chuttani, A.K. Mishra, P. Trivedi, Topical delivery of fluorescence (6-Cf) labeled and radiolabeled (99m-Tc) cisplatin and imiquimod by a dual drug delivery system, J. Label. Compd. Radiopharm. 57 (6) (May 2014) 425-433, https://doi.org/10.1002/JLCR.3201.
  88. C.-C. Ke et al., "Quantitative Measurement of the Thyroid Uptake Function of Mouse by Cerenkov Luminescence Imaging," doi: 10.1038/s41598-017-05516-5.
  89. C.D. Ramos, D.E. Zantut Wittmann, E.C. Sa ' De Camargo Etchebehere, M. A. Tambascia, C.A. Moreira Silva, E.E. Camargo, Thyroid uptake and scintigraphy using 99mTc pertechnetate: standardization in normal individuals, Sao Paulo Med. J. 120 (2) (2002) 45-48, https://doi.org/10.1590/S1516-31802002000200004.
  90. D.E. Zantut-Wittmann, et al., High pre-therapy [ 99m tc]pertechnetate thyroid uptake, thyroid size and thyrostatic drugs: predictive factors of failure in [i]iodide therapy in graves' disease, Nucl. Med. Commun. 26 (11) (2005) 957-963, https://doi.org/10.1097/01.MNM.0000183795.59097.42.
  91. P. Kumar, A.L. Ganure, B.B. Subudhi, S. Shukla, Design and comparative evaluation of in-vitro drug release, pharmacokinetics and gamma scintigraphic analysis of controlled release tablets using novel pH sensitive starch and modified starch- acrylate graft copolymer matrices, Iran. J. Pharm. Res. IJPR 14 (3) (Mar. 2015) 677. (Accessed 12 December 2022).
  92. H. Gupta, M. Aqil, R.K. Khar, A. Ali, A. Bhatnagar, G. Mittal, Biodegradable levofloxacin nanoparticles for sustained ocular drug delivery, 10.3109/1061186X.2010.504268 19 (6) (Jul. 2011) 409-417, https://doi.org/10.3109/1061186X.2010.504268.
  93. L. Xing, C. Dawei, X. Liping, Z. Rongqing, Oral colon-specific drug delivery for bee venom peptide: development of a coated calcium alginate gel beadsentrapped liposome, J. Contr. Release 93 (3) (Dec. 2003) 293-300, https://doi.org/10.1016/J.JCONREL.2003.08.019.
  94. S. Piszczek, S. Osiecki, E. Witkowska-Patena, A. Mazurek, P. Kwasiborski, M. Dziuk, The diagnostic efficacy and safety of stress-only supine and prone myocardial perfusion imaging with a dedicated cardiac gamma camera in patients with suspected or known coronary artery disease, Nucl. Med. Rev. Cent. E Eur. 21 (2) (Jul. 2018) 104-108, https://doi.org/10.5603/NMR.2018.0028.
  95. S. Mishra, et al., Improved intervention of atherosclerosis and cardiac hypertrophy through biodegradable polymer-encapsulated delivery of glycosphingolipid inhibitor, Biomaterials 64 (Sep. 2015) 125-135, https://doi.org/10.1016/J.BIOMATERIALS.2015.06.001.
  96. S. Turker, et al., Scintigraphic imaging of radiolabelled drug delivery systems in rabbits with arthritis, Int. J. Pharm. 296 (1-2) (May 2005) 34-43, https://doi.org/10.1016/J.IJPHARM.2005.02.017.
  97. J.E. Manning, J.W. Lewis, L.J. Marsh, H.M. McGettrick, Insights into leukocyte trafficking in inflammatory arthritis - imaging the joint, Front. Cell Dev. Biol. 9 (Mar. 2021) 635102, https://doi.org/10.3389/FCELL.2021.635102/BIBTEX.
  98. C.M. Paulos, M.J. Turk, G.J. Breur, P.S. Low, Folate receptor-mediated targeting of therapeutic and imaging agents to activated macrophages in rheumatoid arthritis, Adv. Drug Deliv. Rev. 56 (8) (Apr. 2004) 1205-1217, https://doi.org/10.1016/J.ADDR.2004.01.012.
  99. M.A. Momin, M.N.A. Abdullah, M.S. Reza, Comparison of relative renal functions calculated with 99mTc-DTPA and 99mTc-DMSA for kidney patients of wide age ranges, Phys. Med. 45 (Jan. 2018) 99-105, https://doi.org/10.1016/J.EJMP.2017.12.005.
  100. Q. Li, D. Wang, X. Zhu, K. Shen, F. Xu, Y. Chen, Combination of renal apparent diffusion coefficient and renal parenchymal volume for better assessment of split renal function in chronic kidney disease, Eur. J. Radiol. 108 (Nov. 2018) 194-200, https://doi.org/10.1016/J.EJRAD.2018.10.002.
  101. G. Arora, A. Mishra, Gaurav, N. Chandra, P. Kesharwani, G.K. Jain, In vitro and in vivo scalp retention and penetration of 99mTc-minoxidil solution, J. Pharmaceut. Sci. (Sep. 2022), https://doi.org/10.1016/J.XPHS.2022.09.016.
  102. S. Mehta, et al., Vaginal distribution and retention of a multiparticulate drug delivery system, assessed by gamma scintigraphy and magnetic resonance imaging, Int. J. Pharm. 426 (1-2) (Apr. 2012) 44-53, https://doi.org/10.1016/J.IJPHARM.2012.01.006.
  103. A. Kaur et al., "Intravaginal Delivery of Polyphenon 60 and Curcumin Nanoemulsion Gel," doi: 10.1208/s12249-016-0652-6.
  104. A. Patel, A. Tyagi, R.K. Sharma, H. Thakkar, A gamma scintigraphy study to investigate uterine targeting efficiency of raloxifene-loaded liposomes administered intravaginally in New Zealand white female rabbits, Drug Deliv. 23 (9) (Nov. 2016) 3330-3338, https://doi.org/10.1080/10717544.2016.1177137.
  105. A. Kaur, et al., Development of nanoemulsion based gel loaded with phytoconstituents for the treatment of urinary tract infection and in vivo biodistribution studies, Adv. Pharmaceut. Bull. 7 (4) (2017) 611-619, https://doi.org/10.15171/APB.2017.073.
  106. P.V. Pople, K.K. Singh, Development and evaluation of colloidal modified nanolipid carrier: application to topical delivery of tacrolimus, Eur. J. Pharm. Biopharm. 79 (1) (Sep. 2011) 82-94, https://doi.org/10.1016/J.EJPB.2011.02.016.