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Imaging hypoxia using positron emission tomography (PET) is of great importance for cancer therapy. [18F]
Fluoromisonidazole (FMISO) was the first PET agent used for imaging tumor hypoxia. Various radiolabeled nitroimidazole 
derivatives such as [18F]fluoroerythronitroimidazole (FETNIM), [18F]1-α-D-(2-deoxy-2-fluoroarabinofuranosyl)-2-
nitroimidazole(FAZA), 2-(2-nitroimidazol-1-yl)-N-(3,3,3-[18F]-trifluoropropyl)acetamide ([18F]EF-3), [18F]2-(2-nitro-1H-
imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide (EF-5), 3-[18F]fluoro-2-(4-((2-nitro-1H-imidazol-1-yl)methyl)-
1H-1,2,3,-triazol-1-yl)-propan-1-ol ([18F]HX-4), and [18F]fluoroetanidazole (FETA) were developed successively. 
However, these imaging agents still produce PET images with limited resolution; the lower blood flow in hypoxic 
tumors compared to normoxic tumors results in low uptake of the agents in hypoxic tumors. Thus, the development 
of better imaging agents is necessary.
J Radiopharm Mol Probes 2(2):73-83, 2016
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Introduction

Positron emission tomography (PET) is a nuclear 
imaging technique used in the diagnosis of different 
types of cancer, such as colorectal cancer, melanoma, 
head and neck cancer, lung cancer, breast cancer, and 
prostate cancer, because of its wide scope and high 
sensitivity (1-7). 18F (t1/2 = 109.77 min, 90% β+, Eβ+max 
= 0.635 MeV, 3% EC) is the most commonly used PET 
radioisotope because of excellent imaging properties, 
and thus, the development of 18F-labeled bioactive 
molecules has become an important area.

Several radiolabeled 2-nitroimidazole derivatives, 
such as [18F]fluoromisonidazole ([18F]FMISO) (8, 9), 
[18F]fluoroerythronitroimidazole ([18F]FETNIM) (10), 

1-R-D-(2-deoxy-2-[18F]fluoroarabinofuranosyl)-2 
nitroimidazole ([18F]-FAZA) (11), 2-(2-nitroimidazol-1-
yl)-N-(3-[18F]fluoropropyl)acetamide ([18F]-EF1) (12), 
2-(2-nitroimidazol-1-yl)-N-(3,3,3-[18F]-trifluoropropyl)
acetamide ([18F]EF-3) (13), 2-(2-nitro-1H-imidazol-1-
yl)-N-(2,2,3,3,3-[18F]-pentafluoropropyl) acetamide ([18F]
EF-5) (14), 3-[18F]fluoro-2-(4-((2-nitro-1H-imidazol-1-yl)
methyl)-1H-1,2,3,-triazol-1-yl)-propan-1-ol ([18F]HX-4) 
(15), and [18F]-fluoroetanidazole ([18F]FETA) (16) have 
been developed and extensively studied to detect tumor 
hypoxia. Nitroimidazole residue is reduced to reactive 
chemical species, which can bind to cell components in 
the absence of sufficient oxygen (11, 17-22).

Among them, [18F]FMISO was most widely used 
nitroimidazole derivate for imaging tumor hypoxia in 
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vivo with clinical PET (23, 24). [18F]FMISO has been 
shown to selectively bind to hypoxic cells both in vitro 
and in vivo. [18F]FMISO has favorable chemical and 
physicochemical properties in terms of lipophilicity 
(octanol/water partition coefficient; log P = 2.6) and 
an appropriate reduction potential of E-389 mV that 
are responsible for high cellular uptake and trapping 
in hypoxic cells (25, 26). Many other nitroimidazole 
derivatives have been developed and used for pre-
clinical and clinical tests(Figure 1). 

Recently, Al18F-labeled 1, 4, 7-triazacyclononane-
1,4-diacetic acid (NODA)-nitroimidazole derivatives 
(2,2'-(7-(2-(2-nitroimidazolyl)ethyl)-1,4,7-triazonane-1,4-

diyl)diacetic acid (1) and 2, 2'-(7-(3-(2-nitroimidazolyl)
propyl)-1,4,7-triazonane-1,4-diyl)diacetic acid (2) have 
been reported. These conjugates showed higher standard 
uptake values (SUV) and tumor-to-muscle ratios than 
1,4,7-triazacyclononane-1, 4, 7-triacetic acid (NOTA) and 
1,4,7,10-tetraazacyclododecane-1, 4, 7,10-tetraacetic acid 
(DOTA) nitroimidazole derivatives (Figure 2) (27). This 
method offers straightforward 18F labeling in aqueous 
solutions with high radiochemical yields (27-29). 

This review looks at various 18F-labeled 2-nitroimidazole 
derivatives for tumor hypoxia imaging and compares major 
parameters like percentage of injected dose per weight (% 
ID/g), tumor-to-blood (T/B), and tumor-to-muscle (T/M) 
ratios between established hypoxia markers in preclinical 
studies(Table 1). 

Figure 1. Structures of known 18F-labeled 2-nitroimidazole derivatives as 
hypoxia imaging agents.

Figure 2. Structures of 18F labeled nitroimidazole derivatives that were developed 
recently. 1) 2,2'-(7-(2-(2-nitroimidazolyl)ethyl)-1,4,7-triazonane-1,4-diyl)diacetic 
acid (1); 2) 2,2'-(7-(3-(2-nitroimidazolyl)propyl)-1,4,7-triazonane-1,4-diyl)diacetic 
acid (2). 

Name Partition-coefficient Values References

[18F]FMISO 2.6 (11, 57)

[18F]TFMISO 2.6 (47)

[18F]FAZA 1.1 (11)

[18F]FETNIM 0.17 (46, 47)

[18F]EF-1 0.20 (47)

[18F]EF-3 1.25 (47, 52)

[18F]EF-5 5.7 (47, 52)

[18F]HX-4 -0.69 (15, 56)

[18F]FETA 0.16 (37)

[18F]FRP-170 0.094 (56)

[18F]NTR −0.46 (51)

Table 1. Partition-coefficient values of 2-nitroimidazole based hypoxia imaging agents.
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2-Nitroimidazole as hypoxic agent

2-Nitroimidazole, which is thought to be reduced and 
to accumulate at the sites of hypoxia, has been labeled 
with 18F, 123I, and 99m Tc and used for imaging purposes 
in both single photon emission computed tomography 
(SPECT) and PET.

In particular, 2-nitroimidazole can be reduced to form a 
reactive chemical species, which can bind irreversibly to cell 
components in the absence of sufficient oxygen; therefore, 
development of radiolabeled nitroimidazole derivatives for 
the imaging of tumor hypoxia remains an active field of 
research to improve cancer therapy results (17, 30-32). When 
a nitroimidazole molecule enters hypoxic cells, it undergoes 
an enzymatic single electron reduction, depending on the 
availability of oxygen, and forms several radical anions 
(33, 34). These anions undergo further reduction to produce 
nitroso (2e  ̄reduction), hydroxylamine (4e  ̄reduction), and 
amine (6e  ̄ reduction) derivatives(Figure 3). Furthermore, 
as a result of these processes, any radiolabeled species is 
selectively retained in hypoxic cells (19, 20, 22). The process 
is initiated by an enzyme-mediated (nitroreductase) single 
electron reduction to form a free radical. After the hypoxia-
sensitive reduction of the nitro group to amine, 18F-labeled 
nitroimidazoles are bound to intracellular proteins in the 
tumor (20).

 The 4-nitroimidazoles (-527 mV) have a lower electron 
affinity and single electron reduction potential (SERP) 
value than the 2-nitroimidazoles (-389 mV), which 
means 2-nitroimidazoles are more efficiently reduced 

and retained in hypoxic cells than 4-nitroimidazoles (35, 
36). The nitro group with appropriate redox potential 
(-380 to -390 mV), lipophilicity, stability to hypoxia 
independent degradation, and structure are important in 
determining the overall behavior of the hypoxia imaging 
agent (36, 37). For 18F-based PET radiopharmaceuticals, 
high photon flux (and low energy) is needed for high 
detection sensitivity and spatial image resolution (37).

18F-labeled 2-nitroimidazoles 

[18F]FMISO was the first and most widely used 
2-nitroimidazole agent used for in vivo hypoxia PET 
imaging (7, 38, 39). It has been evaluated extensively 
for the detection of tumor hypoxia pre-clinically using 
different animal models (Table 2). The first clinical 
study to image tumor hypoxia using [18F]FMISO was 
conducted by Rasey et al (40). It was used to quantify 
the hypoxic fraction in patients with lung, head and 
neck, and prostate cancers (41, 42). It was also used in 
the hearts of patients with myocardial ischemia (43, 44). 
Several pre-clinical and clinical studies have shown its 
potential as a hypoxia imaging agent (45). It is cleared 
mainly through the hepatobiliary and gastrointestinal 
pathway (Table 2). Its highest activity was found 
in the liver and intestines, and percentages of intact 
[18F]FMISO in plasma, urine, kidney, and liver were 
47%, 77%, 3%, and 3%, respectively (46). Because 
of the lipophilic nature of [18F]FMISO, it failed to 
gain wider acceptance for routine clinical application. 
Several alternative nitroimidazole derivatives have 
been developed to improve the imaging performance 
by improving target to non-target ratio by increasing 
excretion rates and overcome some of the limitations 
of [18F]FMISO such as nonspecific retention, metabolic 
conversion, and low partition coefficient, all leading to 
faster clearance properties (47). 

[18F]FAZA is another 2-nitroimidazole hypoxia 
imaging agent. The alkyl side chain in [18F]FMISO is Figure 3. Proposed mechanism for nitroimidazole
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replaced by a polar arabinose sugar in an attempt to 
increase the overall hydrophilicity of the compound 
(48). [18F]FAZA was found to be able to diffuse rapidly 
through tissue and be excreted by the kidneys faster due 
to its highly hydrophilic nature (log P = 1.1) compared 
to [18F]FMISO (log P = 2.6) (Table 1) (11). Accordingly, 
[18F]FAZA was cleared more quickly from blood and 
normal tissues in animal studies and provided higher 
tumor-to-muscle ratios than [18F]FMISO. Similar to 
[18F]FMISO, [18F]FAZA was found to be useful for 
imaging hypoxia in various tumors (Table 2) (47, 48). 
[18F]FETA is also a 2-nitroimidazole analog that was 
found to have significantly lower levels of retention 
in the liver and lungs than [18F]FMISO (16). [18F]
FETNIM also showed rapid elimination in non-target 
tissues via excretion through the urinary pathway (49). 
By introducing the 1,2,3-triazole moiety in [18F]HX-
4, its clearance properties improved relative to [18F]
FMISO, demonstrating that the kidney is the major 
[18F]HX-4 excretion pathway (15). The low levels of 
uptake in intestines, liver, kidney, and other normal 
tissues result in lower background signals, which 
enhances the imaging properties of [18F]HX-4 (15). 
1-[18F]Fluoro-3-(3-nitro-1H-1,2,4-triazol-1-yl)propan-
2-ol ([18F]NEFA) and 2-[18F]Fluoro-N-(2-(2-nitro-1H-
imidazol-1-yl)ethyl)acetamide ([18F]NEFT) derivatives 
have been reported to have lower mean tumor uptakes 
([18F]NEFA: 1.55 ± 0.65; [18F]NEFT: 2.45 ± 0.08; [18F]
FMISO: 3.29 ± 0.73) and lower tumor-to-muscle ratios 
([18F]NEFA: 1.14; [18F]NEFT: 1.41; [18F]FMISO: 1.74) 
than [18F]FMISO in EMT-6 tumor-bearing mice at 30 
min post-injection (Table 2) (50). 3-[18F]Fluoro-2-(4-
((2-nitro-1H-imidazol-1-yl)methyl)-1H-1,2,3-triazol-
1-yl)propan-1-ol ([18F]3-NTR) was developed, but 
because of its poor binding capabilities, it could not be 
used as a hypoxia marker (51). [18F]3-NTR (1.5 ± 0.1) 
showed lower in vitro uptake than [18F]FMISO (11.0 ± 
0.4) in an HT1080 cell line 3 h post-incubation (Table 
2) (51).

However, it might be difficult for more hydrophilic 
compounds to diffuse into tumor tissues and stay there 
(11, 38). Therefore, more lipophilic derivatives, such 
as [18F]EF-3 and [18F]EF-5, were developed (52). One 
possible disadvantage of [18F]EF-3 and [18F]EF-5 is that 
the labeling chemistry is more complex than the simple 
nucleophilic displacement reaction used for mono-
fluorinated 2-nitroimidazoles (47). Animal models of 
these fluorinated derivatives showed a more homogeneous 
distribution in normal tissues along with clearance through 
the intestines and kidneys, and accumulation in hypoxic 
tumors (13, 14, 53, 54).

Hypoxic tumor uptake of the above mentioned tracers in 
xenograft-bearing mice demonstrated both high focal and 
more patchy distribution of the hypoxia PET tracer (55). 
These heterogeneous patterns of accumulation can be 
explained by the way the vascular structures, responsible 
for the tracer influx and washout, are organized within the 
tumor (15). The need to wait for several hours to permit 
clearance of the agent from the non-target tissues (contrast 
between lesion and background is typically < 2:1 at about 
90 min post-injection), is a major drawback to 18F labeled 
agents due to its short half-life of 110 min (17). Due to 
various limitations, none of these radiotracers have found 
their way into routine clinical use (37).

Figure 4. Small animal micro positron emission tomographic images of CT-26 
tumor bearing mice at 30, 60, and 120 min after intravenous injection of (A) 1; 
and (B) 2. Arrows indicate the tumors. Reprinted with permission of the American 
Chemical Society from: Hoigebazar L et al., J Med Chem. 2012;55(7):3155.
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Recently, an 18F-labeling method using an Al18F complex 
in aqueous solution was used as a straightforward 18F-labeling 
procedure (28). 2-nitroimidazole derivatives conjugated with 
NODA that can be labeled with 18F using an Al18F complex. 
The synthesized derivatives had excellent 18F-labeling 
efficiencies, high stabilities, and specific uptakes in cultured 
hypoxic tumor cells. These derivatives showed higher tumor 
to non-tumor ratios in xenograft-bearing mice (27) (Figure 4).

Although the uptakes of various 18F-nitroimidazole 
compounds in tumors have been reported before, it is 
difficult to compare them because of different animal 
models, nature of the tumors induced, and post-injection 
times. Thus, a comparison of major parameters (%ID/g, 
T/B, T/M, and major clearance organs) between 
established hypoxia markers in preclinical studies was 
made in Table 2. The imaging studies to visualize tumor 
hypoxia in human subjects of the tracers mentioned above 

have been reviewed in several studies (18, 38, 56). 

Conclusion

Imaging hypoxia is very important to improve cancer 
therapy results; therefore, developing hypoxia imaging 
agents have become an active part of research. Many 
nitroimidazole and non-nitroimidazole derivatives have 
been developed for detecting hypoxia, but only a few are 
used for clinical studies. PET using the 2-nitroimidazole 
[18F]FMISO holds promise for the evaluation of tumor 
hypoxia at both global and local levels. Many other 
derivatives have been developed for imaging hypoxia, 
which have provided better results and may potentially 
replace [18F]FMISO. 

Animal 
model Tumor type % ID/g T/B T/M Clearance 

organs References.

[18F]-FMISO

BALB/c nude 
mice A549 human NSCLC 3.5 (58)

BALB/c nude 
mice NCI-H520 human NSCLC 4.45 (58)

BALB/c nude 
mice NCI-H596 human NSCLC 2.59 (58)

BALB/c nude 
mice U87 MG human glioblastoma 1.93 (58)

BALB/c nude 
mice PC3 human prostate 3.53 (58)

BALB/c nude 
mice DU145 human prostate 2.27 (58)

BALB/c nude 
mice Caki human RCC 1.28 ± 0.36 (58)

BALB/c nude 
mice

SK-N-BE human
neuroblastoma 2.48 (58)

BALB/c nude 
mice

CLS-2 human urinary
bladder carcinoma 3.62 ± 0.06 (58)

BALB/c nude 
mice

KB-31 human
nasopharyngeal
carcinoma

5.7 (58)

Table 2. Comparison of major parameters (% ID/g, T/B, and T/M) between established hypoxia markers in preclinical studies.a
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Swiss nude 
mice

A431 human 
epidermoid
carcinoma

3.67 ± 1.00 
(3 h)

4.92 ± 0.77 
(3 h)

3.95 ± 1.34
(3 h)

Liver-
kidney-
intestines

(57)

BALB/c B16 mouse melanoma 2.04 ± 0.83 (90 
min) (58)

Swiss nude 
mice

AR42J rat pancreatic
acinar carcinoma

2.27 ± 0.39 
(3 h)

3.39 ± 0.52 
(3 h)

2.92 ± 0.66 
(3 h)

Liver-
kidney-
intestines

(57)

BALB/c mice EMT6 mouse mammary
carcinoma

4.32 ± 0.72 
(3 h)

3.03 ± 0.30 
(3 h)

3.22 ± 0.68 
(3 h)

Liver-
kidney-
intestines

(57)

CDF1 mice C3H mouse mammary
carcinoma

5.38 ± 1.95 
(2 h) 4.3 ± 2.0 (2 h) 6.4 ± 3.3 (2 h) Liver-

kidney-lung (49)

Copenhagen 
rats

Dunning rat R3327-AT
prostate carcinoma 0.3 (2 h) (59)

C3H mice SCCVII mouse squamous
cell carcinoma 1.5 (80 min) (60)

C3H mice KHT mouse sarcoma 2.24 ± 0.40 
(4 h) 6.79 (4 h)

Liver-large 
intestine-
kidney

(61)

BALB/c EMT6 mouse breast cancer 3.29 ± 0.73 
(30 min) 0.91 1.74 Liver-lung (50)

Wistar rats C6 rat glioma 0.42 (2 h) 2.6 (2 h)
Kidney-
intestines-
liver

(62)

Wistar rats Walker 256 rat
carcinosarcoma 1.00 (3 h)

2.7 ± 0.6 (1 h)
4.4 ± 1.3 (3 h) (11)

Nude rats Morris rat McA-R-7777 
hepatoma 0.72 (3 h) 2.5 (3 h) (63)

C3H mice KHT mouse sarcoma

1.40 ± 0.25 
(2 h)
3.30 ± 2.00 
(4 h)

(16)

CBA mice 
CaNT tumor (Poorly 
differentiated nonimmunogenic
carcinoma)

1.7 ± 0.5 Kidney (51)

Fisher rats
DMBA
induced
mammary carcinoma

0.899 ± 0.1132 
(1 h)
1.047 ± 0.1107 
(2 h)
0.691 ± 0.0967 
(2 h)

1.566 ± 0.1879 
(1 h)
2.239 ± 0.2042 
(2 h)
3.780 ± 0.6762 
(4 h)

1.516 ± 0.1754 
(1 h)
2.201 ± 0.1576 
(2 h)
3.246 ± 0.2994 
(4 h)

Liver-kidney (64)

BALB/c nude 
mice

A431 human squamous cell 
carcinoma

3.433 ± 0.770 
(3 h) 3.325 ± 0.201 

(3 h)
2.764 ± 0.725 
(3 h)

Liver-
kidney-lung (65)

BALB/c mice CT-26 mouse colon carcinoma

4.72 ± 0.25
(10 min)
4.51 ± 0.21
(1 h)
3.85 ± 0.56
(2 h)
3.70 ± 0.34 
(2 h)

0.93 ± 0.04 
(10 min)
1.30 ± 0.05 
(1 h)
1.81 ± 0.19 
(2 h)
3.85 ± 0.43 
(2 h)

1.06 ± 0.05 
(10 min)
1.59 ± 0.11 
(1 h)
2.24 ± 0.25 
(2 h)
4.42 ± 0.50 
(2 h)

Liver-
intestines (66)

[18F]-FAZA

Swiss nude 
mice

A431 human epidermoid
carcinoma

2.96 ± 1.27 
(3 h)

9.62 ± 1.44 
(3 h)

7.81 ± 0.94
(3 h)

Liver-
kidney-
intestines

(57)
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Swiss nude 
mice

AR42J rat pancreatic
acinar carcinoma

2.30 ± 1.17 
(10 min)
2.87 ± 1.30 
(1 h)
1.35 ± 0.89 
(3 h)

0.73 ± 0.39 (10 
min)
3.27 ± 1.66 
(1 h)
9.06 ± 4.07 
(3 h)

0.72 ± 0.39 
(10 min)
1.69 ± 1.02 
(1 h)
5.49 ± 2.26 
(3 h)

Kidney-
intestines (57)

BALB/c mice EMT6 mouse mammary
carcinoma

1.38 ± 0.62 
(3 h)

9.82 ± 3.94 
(3 h)

7.10 ± 2.91 
(3 h)

Kidney-
intestines (57)

Wistar rats Walker 256 rat
carcinosarcoma 2.9 ± 0.6 (3 h) (11)

C3H mice SCCVII mouse squamous
cell carcinoma

1.00 (0.5 h)
1.9 (2 h)
5.8 (4 h)

0.8 (0.5 h)
1.9 (2 h)
6.1 (4 h)

(67)

BALB/c nude 
mice

A431 human squamous cell 
carcinoma

1.883 ± 0.170 
(3 h) 5.132 ± 0.750 

(3 h)
3.050 ± 0.734 
(3 h)

Liver-
intestine-
kidney 

(65)

[18F]-FETNIM

CDF1 mice C3H mouse mammary
carcinoma

3.03 ± 1.32 
(2 h)

5.8 ± 2.5 
(2 h)

6.2 ± 2.1 
(2 h) (49)

Sprague-
Dawley rats

7,12-dimethylbenzanthracene 
(DMBA)
induced
mammary carcinoma

0.480 ± 0.10 
(15 min)
0.383 ± 0.096 
(30 min)
0.239 ± 0.037 
(1 h)
0.178 ± 0.046 
(2 h)
0.087 ± 0.043 
(4 h)

1.49 ± 0.40 
(15 min)
1.15 ± 0.35
(30 min)
1.16 ± 0.18 
(1 h)
1.79 ± 0.64 
(2 h)
1.65 ± 0.87 
(4 h)

1.84 ± 0.59 
(15 min)
1.11 ± 0.32
(30 min)
0.99 ± 0.16 
(1 h)
1.53 ± 0.50 
(2 h)
1.42 ± 0.76 
(4 h)

Kidney-
liver-
intestines

(68)

Fischer rats
DMBA
induced
mammary carcinoma

0.796 ± 0.2036 
(1 h)
0.551 ± 0.1582 
(2 h)
0.811 ± 0.3377 
(4 h)

2.290 ± 0.5994 
(1 h)
2.410 ± 0.5672 
(2 h)
8.020 ± 2.4200 
(4 h)

0.660 ± 0.2666 
(1 h)
2.110 ± 0.3468 
(2 h)
5.920 ± 2.2400 
(4 h)

Kidney-liver (64)

[18F]-EF3

C3H mice FSAII mouse fibrosarcoma 1.11 ± 0.23 
(220 min)

2.08 ± 0.18 
(220 min)

2.47 ± 0.27 
(220 min)

Intestines-
kidney-liver (13)

C3H mice NF-SA fibrosarcoma 0.78 ± 0.08 
(220 min)

1.38 ± 0.15 
(220 min)

1.62 ± 0.15 
(220 min) (13)

C3H mice FSA mouse fibrosarcoma 2.39 ± 0.34 
(220 min)

1.24 ± 0.05 
(220 min)

1.31 ± 0.04 
(220 min) (13)

C3H mice SCC VII 1.48 ± 0.16 
(220 min)

2.19 ± 0.14 
(220 min)

2.55 ± 0.07 
(220 min) (13)

C3H mice Sa-NH 1.06 ± 0.11 
(220 min)

1.97 ± 0.45 
(220 min)

2.62 ± 0.24 
(220 min) (13)

C3H mice MCa-4 1.00 ± 0.29 
(220 min)

2.88 ± 0.18 
(220 min)

3.52 ± 0.29 
(220 min) (13)

WAG/Rij rats Rat rhabdomyo-
-sarcoma R1

2.25 ± 0.09 
(3 h)
2.63 ± 0.11 
(4 h)

(52)
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[18F]-EF5

Buffalo rats Morris rat McA-R-7777 
hepatoma

1.36-2.34 
(3 h)

Intestines-
kidney (14)

Fisher rats 9L rat glioma 0.83-1.48 
(3 h)

Intestines-
kidney (14)

[18F]-HX-4

WAG/Rij rats Rat rhabdomyo-
-sarcoma

0.263 ± 0.072 
(2 h) b

0.227 ± 0.059 
(3 h) b

0.198 ± 0.048 
(4 h) b

0.200 ± 0.054 
(5 h) b

0.181 ± 0.058 
(6 h) b

1.456 ± 0.270 
(2 h)
1.860 ± 0.385 
(3 h)
2.512 ± 0.578 
(4 h)
2.378 ± 0.557 
(5 h)
2.883 ± 0.844 
(6 h)

Kidney-
bladder (15)

[18F]FETA

C3H mice KHT mouse sarcoma

2.20 ± 0.77 
(2 h)
3.84 ± 1.51 
(4 h)

(16)

[18F]NEFA

BALB/c EMT6 mouse breast cancer 1.55 ± 0.65 
(30 min) 0.96 1.14 Liver-lung-

kidney (50)

[18F]NEFT

BALB/c EMT6 mouse breast cancer 2.45 ± 0.08 
(30 min) 0.98 1. 41 Liver-lung-

kidney (50)

[18F]3-NTR

CBA mice 
CaNT tumor (Poorly 
differentiated nonimmunogenic
carcinoma)

1.6 ± 0.5 Kidney (51)

Al18F-NODA-ethylnitromidazole

BALB/c mice CT-26 mouse colon carcinoma

2.13 ± 0.41 
(10 min)
0.24 ± 0.03 
(1 h)
0.23 ± 0.05 
(2 h)

0.38 
(1 h)

14.5
(1 h)

Kidney-
liver-lung (27)

Al18F-NODA-propylnitromidazole

BALB/c mice CT-26 mouse colon carcinoma

1.92 ± 0.12 
(10 min)
0.33 ± 0.55 
(1 h)
0.22 ± 0.04 
(2 h)

0.45
(1 h)

 

3.87
(1 h)

Kidney-
liver-lung (27)

a Data are expressed as mean ± SD. %ID/g, percentage injected dose corrected for weight (g); T/B, tumor-to-blood ratio; T/M, tumor-to-muscle ratio.
b %ID/mL, percentage injected radioactivity per mL
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