• Title/Summary/Keyword: $^{18}$F-FDG

Search Result 540, Processing Time 0.029 seconds

A Study on the Use of Active Protocol Using the Change of Pitch and Rotation Time in PET/CT (PET/CT에서 Pitch와 Rotation Time의 변화를 이용한 능동적인 프로토콜 사용에 대한 연구)

  • Jang, Eui Sun;Kwak, In Suk;Park, Sun Myung;Choi, Choon Ki;Lee, Hyuk;Kim, Soo Young;Choi, Sung Wook
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.67-71
    • /
    • 2013
  • Purpose: The Change of CT exposure condition have a effect on image quality and patient exposure dose. In this study, we evaluated effect CT image quality and SUV when CT parameters (Pitch, Rotation time) were changed. Materials and Methods: Discovery Ste (GE, USA) was used as a PET/CT scanner. Using GE QA Phantom and AAPM CT Performance Phantom for evaluate Noise of CT image. Images are acquired by using 24 combinations that four stages pitch (0.562, 0.938, 1.375, 1.75:1) and six stages X-ray tube rotation time (0.5s-1.0s). PET images are acquired using 1994 NEMA PET Phantom ($^{18}F-FDG$ 5.3 kBq/mL, 2.5 min/frame). For noise test, noise are evaluated by standard deviation of each image's CT numbers. And then we used expectation noise according to change of DLP (Dose Length Product) to experimental noise ratio for index of effectiveness. For spatial resolution test, we confirmed that it is possible to identify to 1.0 mm size of the holes at the AAPM CT Performance Phantom. Finally we evaluated each 24 image's SUV. Results: Noise efficiency were 1.00, 1.03, 1.01, 0.96 and 1.00, 1.04, 1.02, 0.97 when pitch changes at the QA Phantom and AAPM Phantom. In case of X-ray tube rotation time changes, 0.99, 1.02, 1.00, 1.00, 0.99, 0.99 and 1.01, 1.01, 0.99, 1.01, 1.01, 1.01 at the QA Phantom and AAPM Phantom. We could identify 1.0 mm size of the holes all 24 images. Also, there were no significant change of SUV and all image's average SUV were 1.1. Conclusion: 1.75:1 pitch is the most effective value at the CT image evaluation according to pitch change and It doesn't affect to the spatial resolution and SUV. However, the change of rotation time doesn't affect anything. So, we recommend to use the effective pitch like 1.75:1 and adequate X-ray tube rotation time according to patient size.

  • PDF

Effect of the Dose Reduction Applied Low Dose for PET/CT According to CT Attenuation Correction Method (PET/CT 저선량 적용 시 CT 감쇠보정법에 따른 피폭선량 저감효과)

  • Jung, Seung Woo;Kim, Hong Kyun;Kwon, Jae Beom;Park, Sung Wook;Kim, Myeong Jun;Sin, Yeong Man;Kim, Yeong Heon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.127-133
    • /
    • 2014
  • Purpose: Low dose of PET/CT is important because of Patient's X-ray exposure. The aim of this study was to evaluate the effectiveness of low-dose PET/ CT image through the CTAC and QAC of patient study and phantom study. Materials and Methods: We used the discovery 710 PET/CT (GE). We used the NEMA IEC body phantom for evaluating the PET data corrected by ultra-low dose CT attenuation correction method and NU2-94 phantom for uniformity. After injection of 70.78 MBq and 22.2 MBq of 18 F-FDG were done to each of phantom, PET/CT scans were obtained. PET data were reconstructed by using of CTAC of which dose was for the diagnosis CT and Q. AC of which was only for attenuation correction. Quantitative analysis was performed by use of horizontal profile and vertical profile. Reference data which were corrected by CTAC were compared to PET data which was corrected by the ultra-low dose. The relative error was assessed. Patients with over weighted and normal weight also underwent a PET/CT scans according to low dose protocol and standard dose protocol. Relative error and signal to noise ratio of SUV were analyzed. Results: In the results of phantom test, phantom PET data were corrected by CTAC and Q.AC and they were compared each other. The relative error of Q.AC profile was been calculated, and it was shown in graph. In patient studies, PET data for overweight patient and normal weight patient were reconstructed by CTAC and Q.AC under routine dose and ultra-low dose. When routine dose was used, the relative error was small. When high dose was used, the result of overweight patient was effectively corrected by Q.AC. Conclusion: In phantom study, CTAC method with 80 kVp and 10 mA was resulted in bead hardening artifact. PET data corrected by ultra- low dose CTAC was not quantified, but those by the same dose were quantified properly. In patients' cases, PET data of over weighted patient could be quantified by Q.AC method. Its relative difference was not significant. Q.AC method was proper attenuation correction method when ultra-low dose was used. As a result, it is expected that Q.AC is a good method in order to reduce patient's exposure dose.

  • PDF

Usefulness of DFOV Changes in Pediatric PET/CT Image Reconstruction (PET/CT에서 소아환자 영상 재구성 시DFOV 변화의 유용성)

  • Choi, Sung-Wook;Choi, Choon-Ki;Lee, Kyoo-Bok;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.3
    • /
    • pp.171-175
    • /
    • 2008
  • Purpose: There have been something difficulties in locating focuses and quantitative analysis in case of pediatric patients because of the relatively small body compared to adults. This author of this study, therefore, evaluated the usefulness of DFOV (Display Field Of View) according to its changes in PET/CT image reconstruction by means of the phantom experiment and pediatric patients examination. Materials & Methods: 0.023 MBq/cc of $^{18}F$-FDG was put into the uniform NU2-94 phantom, and then emission scan was acquired for 10 minutes. For reconstruction, DFOV values were changed to 50, 45, 40, 35, 30, and 25 cm respectively. As for patient images, 20 patients who were diagnosed as the one or suspicion of the children tumor are targeted from Oct 2007 to Jan 2008. For image reconstruction, 50 cm was the basis of DFOV, and the value was adjusted to DFOV 45 cm to 25 cm respectively. In the phantom and the reconstruction image of pediatric patients, the changes in pixel size and $SUV_{max}$ according to DFOV changes were analyzed. Results: As DFOV decreased to 50, 45, 40, 35, 30, and 25 cm by means of the phantom, the pixel size was changed to 3.906, 3.515, 3.125, 2.734, 2.343, and 1.953 mm respectively. Besides, as a result of reconstruction DFOV in images of pediatric patients to 50, to 25 cm, the different values of $SUV_{max}$ are shown as 3.3, 7.3, 12, 14, 18% and 2.6, 4.3, 5.0, 7.0, 10.0% on respectively when 50 cm was the standard. Conclusion: In $SUV_{max}$ using the phantom, as DFOV decreased every 5 cm, the mean value gradually increased. With 50 cm as the standard, the increase rates were 3.7, 6.5, 11.2, 19.5, and 32.1% respectively. As for pediatric patients image too, as DFOV decreased, the rates increased as in the phantom experiment. In image reconstruction, since DFOV decrease regardless of matrix size change reduced the pixel size, the image quality can be improved. This would be more useful than reconstruction and enlarge images of pediatric patients in the same way of examining adults. However, when the value of 35 cm DFOV was applied, this may result in truncated artifact, and thus the application should be properly controlled. Change of DFOV may produce better image for pediatric patients, but changes of SUV values according to DFOV change should be considered in reading.

  • PDF

Analysis of Respiratory Motion Artifacts in PET Imaging Using Respiratory Gated PET Combined with 4D-CT (4D-CT와 결합한 호흡게이트 PET을 이용한 PET영상의 호흡 인공산물 분석)

  • Cho, Byung-Chul;Park, Sung-Ho;Park, Hee-Chul;Bae, Hoon-Sik;Hwang, Hee-Sung;Shin, Hee-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.3
    • /
    • pp.174-181
    • /
    • 2005
  • Purpose: Reduction of respiratory motion artifacts in PET images was studied using respiratory-gated PET (RGPET) with moving phantom. Especially a method of generating simulated helical CT images from 4D-CT datasets was developed and applied to a respiratory specific RGPET images for more accurate attenuation correction. Materials and Methods: Using a motion phantom with periodicity of 6 seconds and linear motion amplitude of 26 mm, PET/CT (Discovery ST: GEMS) scans with and without respiratory gating were obtained for one syringe and two vials with each volume of 3, 10, and 30 ml respectively. RPM (Real-Time Position Management, Varian) was used for tracking motion during PET/CT scanning. Ten datasets of RGPET and 4D-CT corresponding to every 10% phase intervals were acquired. from the positions, sizes, and uptake values of each subject on the resultant phase specific PET and CT datasets, the correlations between motion artifacts in PET and CT images and the size of motion relative to the size of subject were analyzed. Results: The center positions of three vials in RGPET and 4D-CT agree well with the actual position within the estimated error. However, volumes of subjects in non-gated PET images increase proportional to relative motion size and were overestimated as much as 250% when the motion amplitude was increased two times larger than the size of the subject. On the contrary, the corresponding maximal uptake value was reduced to about 50%. Conclusion: RGPET is demonstrated to remove respiratory motion artifacts in PET imaging, and moreover, more precise image fusion and more accurate attenuation correction is possible by combining with 4D-CT.

A Feasibility Study of a SiPM Based Intraoperative Beta Imaging/Gamma Probe using the Depth of Interaction Measurement (실리콘 광증폭기와 반응깊이 측정방법을 이용한 수술용 베타 영상/감마 프로브 가능성 연구)

  • Kwak, In-Suk;Kang, Han Gyu;Son, Jeong-Whan;Lee, Jae Sung;Hong, Seong Jong
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.7-14
    • /
    • 2016
  • Radiopharmaceutical agents for positron emission tomography (PET), such as $^{18}F$-FDG and $^{68}Ga$, have been used not only for whole-body PET imaging but also for intraoperative radionuclide-guided surgery due to their quantitative and sensitive imaging characteristics. Current intraoperative probes detect gamma or beta particles, but not both of them. Gamma probes have low sensitivities since a collimator has to be used to reduce backgrounds. Positron probes have a high tumor-to-background ratio, but they have a 1-2 mm depth limitation from the body surface. Most of current intraoperative probes produce only audible sounds proportional to count rates without providing tumor images. This research aims to detect both positrons and annihilation photons from $^{18}F$ using plastic scintillators and a GAGG scintillation crystal attached to silicon photomultiplier (SiPM). The depth-of-interaction (DOI) along the plastic scintillator can be used to obtain the 2-D images of tumors near the body surface. The front and rear part of the intraoperative probe consists of $4{\times}1$ plastic scintillators ($2.9{\times}2.0{\times}12.0mm^3$) for positron detection and a Ce:GAGG scintillation crystal ($12.0{\times}12.0{\times}9.0mm^3$) for annihilation photon detection, respectively. The DOI resolution of $4.4{\pm}1.6mm$ along the plastic scintillator was obtained by using the 3M enhanced specular reflector (ESR) with rectangular holes between the plastic scintillators, which showed the feasibility of a 2-D image pixel size of $2.9{\times}4.4mm^2$ (X-direction ${\times}$ Y-direction).

Correlation Between Unidentified Bright Objects on Brain Magnetic Resonance Imaging (MRI) and Cerebral Glucose Metabolism in Patients with Neurofibromatosis Type 1

  • Sohn, Young Bae;An, Young Sil;Lee, Su Jin;Choi, Jin Wook;Jeong, Seon-Yong;Kim, Hyon-Ju;Ko, Jung Min
    • Journal of Genetic Medicine
    • /
    • v.9 no.2
    • /
    • pp.84-88
    • /
    • 2012
  • Purpose: Neurofibromatosis type 1 (NF1), which is caused by mutations of the NF1 gene, is the most frequent single gene disorder to affect the nervous system. Unidentified bright objects (UBOs) are commonly observed on brain magnetic resonance imaging (MRI) in patients with NF1. However, their clinical and pathologic significance is not well understood. The purpose of this study was to investigate the correlation between UBOs and cerebral glucose metabolism measured by $^{18}F$-2-Fluoro-2-deoxy-D-glucose ($^{18}F$-FDG) positron emission tomography (PET) in Korean patients with NF1. Materials and Methods: Medical records of 75 patients (34 males and 41 females) with NF1 who underwent brain MRI and PET between 2005 and 2011 were evaluated retrospectively. Clinical data including demographics, neurological symptoms, and brain MRI and PET findings, were reviewed. Results: UBOs were detected in the brain MRI scans of 31 patients (41%). The region most frequently affected by UBOs was the basal ganglia. The most frequent brain PET finding was thalamic glucose hypometabolism (45/75, 60%). Of the 31 patients with UBOs, 26 had thalamic glucose hypometabolism on brain PET, but the other 5 had normal brain PET findings. Conversely, of the 45 patients with thalamic glucose hypometabolism on brain PET, 26 showed UBOs on their brain MRI scans, but 19 had normal findings on brain MRI scans. Conclusion: UBOs on brain MRI scans and thalamic glucose hypometabolism on PET appear to be 2 distinctive features of NF1 rather than correlated symptoms. Because the clinical significance of these abnormal imaging findings remains unclear, a longitudinal follow-up study of changes in clinical manifestations and imaging findings is necessary.

Metabolic impairment pattern analysis of the Alzheimer's disease (Alzheimer's Disease의 대사영상패턴 분석)

  • Juh, Ra-Hyeong;Lee, Chang-Uk;Chung, Yong-An;Choe, Bo-Young;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.91-95
    • /
    • 2004
  • Several MRI studies have reported reductions in temporal lobe volumes in Alzheimer's disease (AD). Measures have been usually obtained with regions-of-interest (ROI) drawn manually on selected medial and lateral portions of the temporal lobes, with variable choices of anatomical borders across different studies. We used the automated voxel-based morphometry (VBM) approach to investigate gray matter abnormalities over the entire extension of the temporal lobe in 10AD patients (MM5E 22)and 22 healthy controls. Foci of significantly reduced gray matter volume in AD patients were detected in both medial and lateral temporal regions, most significantly in the right and left posterior parahippocarmpal gyri. At a more flexible statistical threshold (P<0.01, uncorrected for multiple comparisons), circumscribed foci of significant gray matter reduction were also detected in the right amygdala/enthorinal cortex, the anterior and posterior borders of the superior temporal gyrus bilaterally, and the anterior portion of the left middle temporal gyrus. These VBM results confirm previous findings of temporal lobe atrophic changes in AD, and suggest that these abnormalities may be confined to specific sites within that lobe, rather than showing a widespread distribution.

  • PDF

Protective Effect of Soybean-Derived Phosphatidylserine on the Trimethyltin-Induced Learning and Memory Deficits in Rats

  • An, Yong Ho;Park, Hyun Jung;Shim, Hyun Soo;Choe, Yun Seok;Han, Jeong Jun;Kim, Jin Su;Lee, Hye Jung;Shim, Insop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.337-345
    • /
    • 2014
  • The present study examined the effects of soybean-derived phosphatidylserine (SB-PS) on the learning and memory function and the neural activity in rats with trimethyltin (TMT)-induced memory deficits. The cognitive improving efficacy of SB-PS on the amnesic rats, which was induced by TMT, was investigated by assessing the Morris water maze test and by performing cholineacetyl transferase (ChAT), acetylcholinesterase (AChE) and cAMP responsive element binding protein (CREB) immunohistochemistry. A positron emission tomography (PET) scanning the rat brain was by performed administer 18F-Fluorodeoxy-glucose (18F-FDG). The rats with TMT injection showed impaired learning and memory of the tasks and treatment with SB-PS produced a significant improvement of the escape latency to find the platform in the Morris water maze at the 2nd day compared to that of the MCT group. In the retention test, the SB-PS group showed increased time spent around the platform compared to that of the MCT group. Consistent with the behavioral data, SB-PS 50 group significantly alleviated the loss of acetyl cholinergic neurons in the hippocampus compared to that of the MCT group. Treatment with SB-PS significantly increased the CREB positive neurons in the hippocampus as compared to that of the MCT group. In addition, SB-PS groups increased the glucose uptake in the hippocampus and SB-PS 50 group increased the glucose uptake in the frontal lobe, as compared to that of the MCT group. These results suggest that SB-PS may be useful for improving the cognitive function via regulation of cholinergic marker enzyme activity and neural activity.

Brain Metabolic Network Redistribution in Patients with White Matter Hyperintensities on MRI Analyzed with an Individualized Index Derived from 18F-FDG-PET/MRI

  • Jie Ma;Xu-Yun Hua;Mou-Xiong Zheng;Jia-Jia Wu;Bei-Bei Huo;Xiang-Xin Xing;Xin Gao;Han Zhang;Jian-Guang Xu
    • Korean Journal of Radiology
    • /
    • v.23 no.10
    • /
    • pp.986-997
    • /
    • 2022
  • Objective: Whether metabolic redistribution occurs in patients with white matter hyperintensities (WMHs) on magnetic resonance imaging (MRI) is unknown. This study aimed 1) to propose a measure of the brain metabolic network for an individual patient and preliminarily apply it to identify impaired metabolic networks in patients with WMHs, and 2) to explore the clinical and imaging features of metabolic redistribution in patients with WMHs. Materials and Methods: This study included 50 patients with WMHs and 70 healthy controls (HCs) who underwent 18F-fluorodeoxyglucose-positron emission tomography/MRI. Various global property parameters according to graph theory and an individual parameter of brain metabolic network called "individual contribution index" were obtained. Parameter values were compared between the WMH and HC groups. The performance of the parameters in discriminating between the two groups was assessed using the area under the receiver operating characteristic curve (AUC). The correlation between the individual contribution index and Fazekas score was assessed, and the interaction between age and individual contribution index was determined. A generalized linear model was fitted with the individual contribution index as the dependent variable and the mean standardized uptake value (SUVmean) of nodes in the whole-brain network or seven classic functional networks as independent variables to determine their association. Results: The means ± standard deviations of the individual contribution index were (0.697 ± 10.9) × 10-3 and (0.0967 ± 0.0545) × 10-3 in the WMH and HC groups, respectively (p < 0.001). The AUC of the individual contribution index was 0.864 (95% confidence interval, 0.785-0.943). A positive correlation was identified between the individual contribution index and the Fazekas scores in patients with WMHs (r = 0.57, p < 0.001). Age and individual contribution index demonstrated a significant interaction effect on the Fazekas score. A significant direct association was observed between the individual contribution index and the SUVmean of the limbic network (p < 0.001). Conclusion: The individual contribution index may demonstrate the redistribution of the brain metabolic network in patients with WMHs.

Gender differences in age-related decline of regional cerebral glucose metabolism: implications for the gender differences in frontal function (연령 증가에 따른 전두엽 포도당대사 저하의 남녀 차이)

  • Lee, Eun-Ju;Cho, Sang-Soo;Yun, Eun-Jin;Kim, Yu-Kyeong;Lee, Won-Woo;Kim, Sang-Eun
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2005.05a
    • /
    • pp.212-215
    • /
    • 2005
  • 연령의 증가에 따른 신경원의 활성화도 변화는 기억 및 집행기능 등의 인지기능에 영향을 미치는 것으로 알려져 왔다. 그러나 어떠한 뇌 영역의 기능적 저하가 연령증가에 따라 남자와 여자에서 차별적으로 인지기능의 변화를 가져오는지에 대해서는 거의 알려진 바가 없다. F-18 FDG PET을 이용하여 78명의 정상 성인 남녀를 대상으로 뇌 포도당 대사량을 조사하였다. 남녀가 공통적으로 연령증가에 따라 뇌 포도당 대사량의 저하를 보이는 영역은frontal lobe과 left insula, right anterior cingulate gyrus, bilateral caudate body, thalamus. right corpus callosum 이었다. 여성의 경우 남성과 달리 추가적으로 right caudate와 bilaterial thalamus에서 연령과 뇌 포도당대사량 간에 부적 상관을 보이고 있었다(P < 0.001 uncorrected). 남녀 모두에서 연령이 증가하면서 포도당 대사 저하를 보이는 right inferior frontal gyrus는 여자에게서만 포도당대사 감소비율이 유의하게 컸다. 남녀에서 보이는 이러한 노화 과정 동안의 뇌 포도당 대사의 저하율의 차이가 여성과 남성의 연령증가에 따른 인지적 기능의 차별적 저하에 대한 설명을 제시할 수 있을 것이라 생각한다.

  • PDF