• Title/Summary/Keyword: $^{15}N$-urea

Search Result 191, Processing Time 0.023 seconds

Factors Controlling the Losses of Urea through Ammonia Volatilization (암모니아 휘산에 의한 요소비료의 손실에 미치는 요인)

  • Kim, Su-Jung;Yang, Jae E.;Cho, Byong-Ok;Kim, Jeong-Je;Shin, Young-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.77-82
    • /
    • 2007
  • Volatilization of ammonia from N fertilizer is the major mechanism of N losses that occur naturally in all soils and is influenced by numerous soils, environmental and N fertilizer management factors. Vegetables are often damaged by $NH_3$ gas volatilized from the high rates of N fertilizer. We determined the rate of $NH_3$ volatilization from urea applied to surface of the alluvial soil (coarse silty, mixed, mesic family of Dystric Fluventic Eutrochrepts, Ihyeon series) as affected by fertilizer management factors such as rate of urea application, irrigation schedule and temperature. The $NH_3$ volatilization was triggered about 3 d after urea application and reached at maximum level in general within 15 days. Cumulative amounts of 3.0, 4.4, and 8.0 kg of $NH_3$ N after 17 d were volatilized at application rates of 200, 400, and $600kg\;N\;ha^{-1}$, respectively, which were equivalent to the N losses of 15.0, 10.9, and 13.0% of N applied. Masses of N volatilization were 5, 21, 75 and $87kg\;NH_3\;N\;ha^{-1}$ at 5, 8, 22, and 28, respectively. Total amounts of 21.3, 21.2, and $16.6kg\;N\;ha^{-1}$ were volatilized at control, 5 and 10 mm water irrigation before fertilization, respectively. However, those at 5 mm irrigation after fertilization were only $10.44kg\;N\;ha^{-1}$. Results showed that urea loss can be avoided by incorporating with the recommended level, applying when temperatures are low or irrigating immediately to carry the urea into soil.

Synthesis of substituted urea or benzimidazolone using 1,1'- carbonyldiimidazole and substituted anilines

  • Kyounghoon Lee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.28 no.3
    • /
    • pp.15-19
    • /
    • 2024
  • 1,1'-carbonyldiimidazole (CDI) is a versatile reagent that can be used for synthesizing a variety of organic compounds containing carbonyl functional groups. The reactivity of CDI with two ortho-substituted anilines was tested and characterized with analytic techniques such as NMR, IR, and ESIMS. A reaction of CDI with two equivalents of disubstituted aniline (N1,N1-diethylbenzene-1,2-diamine) formed a urea compound, 1,3-bis(2-(diethylamino)phenyl)urea (1). On the other hand, a reaction with one equivalent of mono-substituted aniline (tert-butyl (2-aminophenyl)carbamate) formed a substituted benzimidazolone, tert-butyl 2-oxo-2,3-dihydro-1H-benzo[d]imidazole-1-carboxylate (2). These results demonstrated that a singly substituted aniline prefers an intramolecular ring formation while an N,N-doubly-substituted aniline prefers a urea formation.

Frozen and Melting Characteristics of Urea-aqueous Solution for Urea-SCR System by Circulation of Engine Coolant (엔진 냉각수 순환에 의한 urea-SCR 시스템용 요소수의 동결 및 해동 특성)

  • Choi, B.C.;Kim, Y.K.;Kim, H.N.
    • Journal of Power System Engineering
    • /
    • v.15 no.4
    • /
    • pp.42-47
    • /
    • 2011
  • The purpose of this study is to investigate the best melting condition with various winding number of a heating pipe, supplying quantity of engine coolant and coolant temperature at the inlet of the heating pipe. Also, it is to suggest getting method of an appropriate quantity of the agent for the urea-SCR system within 10 minutes. For this matter, this study identifies the temperature distribution of inside of urea-tank while it is frozen at the low temperature condition, and suggests the best melting condition of the frozen urea within 10 minutes. From the results, it was found that 2L of melted urea was obtained by the coolant flow rate of 200L/hr at $70^{\circ}C$ for 10 minutes from the start of engine operating.

Influence of the Novel Urease Inhibitor Hydroquinone on Growing Lamb Nitrogen Utilization

  • Zhang, Y.G.;Shan, A.S.;Bao, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.7
    • /
    • pp.992-997
    • /
    • 2002
  • Two in vivo experiments were conducted to evaluate the effect of novel urease inhibitor hydroquinone (HQ) on ammonia release rate from urea hydrolysis, nitrogen balance, nutrient digestibility and efficiency of microbial protein synthesis. In Exp. 1, twelve crossbred cannulated lambs were randomly assigned within initial body weight block to one of four HQ treatments, which included 0 (control), 30, 60 or 80 mg HQ/kg DM intake. Ammonia concentration and pH of ruminal fluid were immediately measured at 0, 2, 4, 6 and 8 h after feeding. Increasing the dose of HQ tended (p<0.15) to linearly decrease NH3 formation. The ammonia peak concentration (2 h post-feeding) in animals receiving HQ was approximately one-half of that in animals not receiving HQ (p<0.01), and a relatively sustained ammonia release could be obtained at the dose of 30 or 60 mg HQ/kg DM. In Exp. 2, sixteen intact crossbred lambs (weight $40{\pm}0.8kg$) were used in a $2{\times}2$ factorial design experiment. The four rations consisting of soybean meal-based (SBM) or urea-based (Urea) nitrogen source with or without HQ (S1, S0, U1 and U0) were fed in digestion and N balance trials. Apparent digestibility of major nutrients except that of ADF was not affected by either nitrogen source or addition of HQ. Regardless of nitrogen source, supplementation of HQ significantly improved ADF digestibility (p<0.05). The various ration had no effects on N metabolism in the presence of HQ. There was significant difference between total purine derivatives (PD), estimated efficiency of microbial N synthesis (p<0.05) and urea-N excretion (p<0.01) in the urine for the SBM ration and for the Urea ration. However, HQ had little influence on efficiency of microbial N synthesis as proportion of daily intake of total tract digestible OM (p>0.05). No interactions between main nitrogen source and HQ were measured throughout the trial. Results of this study suggest that addition of HQ to ration may improve ADF digestion with having no negative effect on N metabolism and microbial protein production.

Urea Transformation and Nitrogen Loss in Waterlogged Soil Column

  • Seol, Su-Il;Lee, Sang-Mo;Han, Gwang-Hyun;Choi, Woo-Jung;Yoo, Sun-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.2
    • /
    • pp.86-93
    • /
    • 2000
  • An experiment was conducted to obtain the quantitative data on the transformation and loss of applied urea-N in waterlogged soil columns. The soil columns were pre-incubated for 35 days to develop oxidized and reduced soil conditions prior to urea application. After urea application at the rate of $150kg\;N\;ha^{-1}$(29.5 mg N), the amounts of nitrogen which were volatilized, leached, and remained in soil column were measured during 38 days of incubation period. On 2 and 4 days of incubation, 54.1%(15.9 mg N) and 98.4%(29.0mg N) of the applied urea was hydrolyzed, respectively. Most of the applied urea was completely hydrolyzed within 6 days. After urea application, the rates of ammonia volatilization were increased with the floodwater pH when the floodwater pH were higher than 7.0. The maximum rate of ammonia volatilization was $0.3mg\;d^{-1}$ when pH of the floodwater showed maximum value of 7.6. The total amount of volatilized nitrogen was 6.1% (1.8mg N) of the applied urea-N. A 63.2 % (18.6mg N) of the applied urea was remained in soil as $NH_4{^+}-N$ and 28.0% (8.2mg N) of the applied urea was leached as $NH_4{^+}-N$ at the end of the incubation. Amount of $NO_3{^-}-N$ in soil was smaller than 2.0 mg throughout the incubation period. The total amount of $NO_3{^-}-N$ leached was very small, which value was 1.8 mg. It suggested that nitrification process was not significant in waterlogged soil column of this study due to high infiltration rate of urea solution applied to the soil column. Therefore only small amount of $NO_3{^-}-N$ was lost by denitrification and leaching process.

  • PDF

Studies on absorption of ammonium, nitrate-and urea-N by Jinheung and Tongil rice using labelled nitrogen (중질소(重窒素)를 이용(利用)한 진흥(振興)과 통일(統一)벼의 암모니움, 질산(窒酸) 및 요소태(尿素態) 질소(窒素)의 흡수특성(吸收特性) 연구(硏究))

  • Park, Hoon;Seok, Sun Jong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.4
    • /
    • pp.225-233
    • /
    • 1978
  • Uptake and distribution of labelled urea, $NH{_4}^+$, and $NO{_3}^-$ by Tongil and Jinheung rice grown with each nitrogen source until ear formation stage under water culture system were as follows. 1. When the previous nitrogen source was same as one tested the uptake rate ($mg^{15}N/g$ d.w. root 2hrs, at $28^{\circ}C$ light) was great in the order of $NH_4$ >urea> $NO_3$ and higher (especially $NH_4$) in Tongil than in Jinheung. Rate limiting step (slowest) seems to be exist at R (root)${\rightarrow}$LS(leaf sheath) for urea, LS${\rightarrow}$LB(leaf blade) for $NH_4$ and M(medium)${\rightarrow}$R for $NO_3$. The fast step of translocation appeare to be at M${\rightarrow}$R for urea R${\rightarrow}$LS for $NH_4$ and LS${\rightarrow}$LB for $NO_3$. 2. The uptake rate of $NH_4$ by the urea-fed plant increased almost linearly from $18^{\circ}C$ via $28^{\circ}C$ to $38^{\circ}C$ in Tongil ($Q_{10}$=1.21 and 1.32 respectively) while no change in Jinheung ($Q_{10}$=0.99 and 1.00 respectively). It decreased by 12% in Jinheung under dark but uo change in Tongil. 3. The uptake rate of nitrogen source by different source-fed plant was great in the order of $NH_4{\rightarrow}^{15}NO_3$ $NO_3{\rightarrow}^{15}NH_4$, $urea{\rightarrow}^{15}NO_3$ and higher (especially $NH_4{\rightarrow}^{15}NO_3$) in Tongil. In the case of $urea{\rightarrow}^{15}NH_4$ it was same in $NH_4{\rightarrow}^{15}NO_3$ for Tongil and slightly lower than that in $NO_3{\rightarrow}^{15}NH_4$ for Jinheung. It was lower (especially Tongil) in $NH_4{\rightarrow}^{15}NO_3$ than in $NH_4{\rightarrow}^{15}NH_4 $ 4. The uptake rate (in $NH_4{\rightarrow}^{15}NO_3$) was higher during 15 minutes than during 2 hours and always higher in Tongil. 5. $^{15}N$ excess % and content in each part, and uptake rate of root seems to have their own significance relatling with metabolism and translocation respectively. The change of nitrogen nutritional environment and source preference of varieties were discussed in relation to field condition and efficient use of nitrogen fertilizer.

  • PDF

Ammonia Volatilization from Rice Paddy Soils Fertilized with 15N-Urea Under Elevated CO2 and Temperature

  • Lim, Sang-Sun;Kwak, Jin-Hyeob;Lee, Dong-Suk;Lee, Sun-Il;Park, Hyun-Jung;Kim, Han-Yong;Nam, Hong-Shik;Cho, Kyeong-Min;Choi, Woo-Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.3
    • /
    • pp.233-237
    • /
    • 2009
  • It has widely been observed that the effect of elevating atmospheric $CO_2$ concentrations on rice productivity depends largely on soil N availabilities. However, the responses of ammonia volatilization from flooded paddy soil that is an important pathway of N loss and thus affecting fertilizer N availability to concomitant increases in atmospheric $CO_2$ and temperature has rarely been studied. In this paper, we first report the interactive effect of elevated $CO_2$ and temperature on ammonia volatilization from rice paddy soils applied with urea. Urea labeled with $^{15}N$ was used to quantitatively estimate the contribution of applied urea-N to total ammonia volatilization. This study was conducted using Temperature Gradient Chambers (TGCs) with two $CO_2$ levels [ambient $CO_2$ (AC), 383 ppmv and elevated $CO_2$ (EC), 645 ppmv] as whole-plot treatment (main treatment) and two temperature levels [ambient temperature (AT), $25.7^{\circ}C$ and elevated temperature (ET), $27.8^{\circ}C$] as split-plot treatments (sub-treatment) with triplicates. Elevated temperature increased ammonia volatilization probably due to a shift of chemical equilibrium toward $NH_3$ production via enhanced hydrolysis of urea to $NH_3$ of which rate is dependent on temperature. Meanwhile, elevated $CO_2$ decreased ammonia volatilization and that could be attributed to increased rhizosphere biomass that assimilates $NH_4^+$ otherwise being lost via volatilization. Such opposite effects of elevated temperature and $CO_2$ resulted in the accumulated amount of ammonia volatilization in the order of ACET>ACAT>ECET>ECAT. The pattern of ammonia volatilization from applied urea-$^{15}N$ as affected by treatments was very similar to that of total ammonia volatilization. Our results suggest that elevated $CO_2$ has the potential to decrease ammonia volatilization from paddy soils applied with urea, but the effect could partially be offset when air temperature rises concomitantly.

Natural 15N Abundances of Corn Treated with Urea and Composted Pig Manure in a Pot Experiment (요소와 돈분퇴비 시용에 따른 포트 재배 옥수수의 질소동위원소 자연존재비 차이)

  • Choi, Woo-Jung;Lee, Sang-Mo;Kim, Kyoung-Cheol;Kim, Pan-Gun;Yoo, Ji-Hyeok;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.4
    • /
    • pp.284-291
    • /
    • 2001
  • To study whether N isotope composition (${\delta}^{15}N$) of crop reflects the kind of fertilizer (chemical or organic) applied to field, a pot experiment was conducted. Corn (Zea mays L.) was cultivated under greenhouse conditions for 70 days. Composted pig manure and urea were applied at 0 and 0 (C0U0), at 0 and 300 (COU2), at 300 and 0 (C2U0) and at 150 and $150kg\;N\;ha^{-1}$ (C1U1), respectively. The ${\delta}^{15}N$ values of composted pig manure and urea were + 13.9‰ and -2.3‰, respectively. The ${\delta}^{15}N$ values of whole parts (roots + stems + leaves + grains) were + 12.7, + 12.9, + 14.0 and + 13.0‰ for C0U0, C0U2, C2U0 and C1U1 treatments, and were not significantly affected by the application of isotopically different N sources (P<0.05). However, leaves or grains showed significantly (P<0.05) different ${\delta}^{15}N$ values between treatments. The ${\delta}^{15}N$ values of leaves and grains were + 14.3 and + 16.2‰ for C2U0, +13.2 and +13.9‰ for C0U0, +10.1 and + 12.6‰ for C1U1 and +10.1 and +12.4‰ for C0U2 treatments. The different ${\delta}^{15}N$ values of corn from the values of N sources (compost and urea) applied to soil showed that the ${\delta}^{15}N$ values of corn were affected not only by the isotope composition of N source, but also by N pool mixing and isotope fractionation accompanying N transformation. This study suggests that although the ${\delta}^{15}N$ values of crop are not identical to the ${\delta}^{15}N$ values of N sources applied to fields, the application of isotopically different N sources such as compost and chemical fertilizer may result in qualitative difference in ${\delta}^{15}N$ values of crop.

  • PDF

Decomposition and N Release of Hairy Vetch Applied as a Green Manure and its Effects on Rice Yield in Paddy Field

  • Lee, Jeong-Sam;Lee, Ho-Jin;Seo, Jong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.2
    • /
    • pp.137-141
    • /
    • 2002
  • Decomposition of green manure is necessary for the nutrient supply in farm soil. Hairy vetch as a green manure is superior to other winter legumes in terms of wintering ability and N accumulation. This experiment was carried out to investigate the decomposition and N release of hairy vetch and its effect on rice production as the following crop in paddy field. Decomposition of hairy vetch placed by soil depth of 0, 10 and 20cm at transplanting time was investigated by mesh bag method, which was enclosed chopped residue in mesh bags. The fate of $^{15}$ N derived from $^{15}$ N-labeled hairy vetch was investigated at harvest in three levels of N fertilization. Grain yield of the transplanted paddy rice cultured with hairy vetch as starter N were compared with that of applying urea as starter N in the field. Hairy vetch residue decomposed very rapidly both in transplanted and dry-seeded paddy field. In transplanted paddy field, hairy vetch residue lost 72-81 % and 86-90% of its weight after one and five month, respectively, as affected by incorporation depth. The C/N ratio of the decomposing vetch residue increased sharply during the early stages and after then, decreased slowly. The amounts of N and P released from the vetch were about 90% and 97% of initial content after one month, respectively. Recoveries of hairy vetch-$^{15}$ N by rice plant were 30.6, 34.6 and 35.7% in 0, 6 and 12 kg urea-N 10 $a^{-l}$ application, respectively, indicating that N fertilization increased the recovery of hairy vetch. $^{15}$ N. Hairy vetch residue incorporated as starter maintained significant N $H_4$$^{+}$-N concentration in soil water of plow layer until effective tillering stage. Grain yield in the plot applied with hairy vetch was not significantly different from that in the plot with urea. We concluded that hairy vetch incorporation could substitute starter N fertilization and showed possibility to reduce N amount of top-dressing.g.g.

Effects of Urea and K2SO4 treatment on the mineral nutrient concentration and fruit skin color of 'Mibaekdo' peach fruits at harvest (Urea와 K2SO4 처리에 의한 복숭아 '미백도'에서 수확 시 과실의 무기성분 농도 및 과피색 변화)

  • Moon, B.W.;Yoon, I.K.;Moon, Y.J.;Nam, K.W.;Lee, Y.C.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.15 no.1
    • /
    • pp.95-105
    • /
    • 2013
  • This study has been conducted to investigate the effect of Urea and K2SO4 treatment at stone hardening stage and 20 days before harvest on soil chemical properties, mineral nutrient concentration and quality of 'Mibaekdo' fruit peach. K concentration after Urea and K2SO4 treatment in soil was increased significantly by Urea 162g+K2SO4 188g/tree(standard amount) treatment at stone hardening stage, K2SO4 1.0% tree-spray, Urea 81g+K2SO4 94g/tree(half amount), Urea 162g+K2SO4 188g/tree and Urea 324g+K2SO4 376g/tree(double amount) soil treatment before harvest 20 days compared to control. T-N, K and Ca concentration in leaf was increased significantly by all treatment. but Na concentration in leaf was increased by Urea 0.5% and K2SO4 1.0% tree-spray treatment before harvest 20 days. T-N concentration in fruit skin was increased significantly by standard amount soil treatment, which decreased by K2SO4 1.0% tree-spray and half amount soil treatment. T-N, K and Ca concentration in fruit flesh(1~10mm depth flesh from peel) were increased markedly by all treatment excepted Urea 0.5% tree-spray. The leaf weight at harvest was increased markedly by Urea 0.5% tree-spray, standard amount and double amount treatment before harvest 20 days. Fruit weight was increased significantly by standard amount compared to all treatment. Red fruit skin(Hunter a value) progress was effective by K2SO4 tree-spray, half amount and double amount treatment before harvest 20 days. Fruit SSC was increased significantly by Urea 0.5% and K2SO4 tree-spray before harvest 20 days, standard amount treatment at stone hardening stage compared to control.