• Title/Summary/Keyword: $^{133}Cs$

Search Result 90, Processing Time 0.027 seconds

113Cd and 133Cs NMR Study of Nucleus-Phonon Interactions in Linear-Chain Perovskite-Type CsCdBr3

  • Park, Sung Soo;Lim, Ae Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.4
    • /
    • pp.109-113
    • /
    • 2016
  • Resonance frequencies from the $^{113}Cd$ and $^{133}Cs$ nuclear magnetic resonance (NMR) spectra for the $CsCdBr_3$ single crystal were measured at varying temperatures by the static NMR method. The temperature-dependent changes of these frequencies are related to the changing structural geometry of the ${CdBr_6}^{4-}$ units, which affects the environment of $^{133}Cs$. The spin-lattice relaxation rates ($1/T_1$) for the $^{113}Cd$ and $^{133}Cs$ nuclei were measured in order to obtain detailed information about the dynamics of $CsCdBr_3$ crystals. The dominant relaxation mechanisms for $^{113}Cd$ and $^{133}Cs$ nuclei are direct single-phonon and Raman spin-phonon processes, respectively.

Cesium NMR in a Paramagnetic $CsMnCl_{3}$ Single Crystal (상자성체 $CsMnCl_{3}$ 단결정에서 $^{133}Cs$ 핵자기공명 연구)

  • Tae-Jong Han
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.2
    • /
    • pp.184-187
    • /
    • 1994
  • Nuclear magnetic resonance of $^{133}Cs$ in a $CsMnCl_{3}$ single crystal grown by the Czochralski method has been investigated by employing a Bruker FT NMR spectrometer. The $^{133}Cs$ resonance of two different groups were recorded. Various transitions belonging to two cesium spectra of a different intensity ratio are analyzed. The quadrupole coupling constant of Cs(I) is $0.15{\pm}0.01$ MHz, and that of Cs(II) is $0.21{\pm}0.01$ MHz. The anisotropy parameter is zero for both. The principal axes of the EFG tensors for these two sites are found to be the same. The Z axis, conventionally the largest component of the EFG tensor, is parallel to the crystallographic c-axis.

  • PDF

133Cs Nuclear Magnetic Resonance Relaxation Study of the Phase Transition of Cs2MnCl4·2H2O Single Crystals

  • Heo, Cheol;Lim, Ae-Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.14 no.2
    • /
    • pp.76-87
    • /
    • 2010
  • The structural phase transition of $Cs_2MnCl_4{\cdot}2H_2O$ single crystals was investigated by determining the $^{133}Cs$ spin-lattice relaxation time $T_1$. The number of resonance lines in the $^{133}Cs$ spectrum changes from seven to one near 375 K, which means that above 375 K the Cs sites are symmetric. Further, the $T_1$ of the $^{133}Cs$ nucleus undergoes a significant change near 375 K, which coincides with the change in the splitting of the $^{133}Cs$ resonance lines. The change in $T_1$ near $T_C$ is related to the loss of $H_2O$, and means that the forms of the octahedra of water molecules surrounding $Cs^+$ are disrupted.

Spectroscopy of Intracellularly Located $%{133}Cs$ Has Been Used to Monitor the Uptake of the Isolated Rat Liver

  • Park Byung-Rae
    • Biomedical Science Letters
    • /
    • v.11 no.3
    • /
    • pp.301-305
    • /
    • 2005
  • MR spectroscopy of intracellularly located $^{133}Cs$ has been used to monitor the uptake of Gd-EOB-DTPA by the isolated rat liver. As shown by ${31}P$ spectroscopy, accumulation of $^{133}Cs$ ions in hepatocytes does not produce detectable effects on the metabolism. The hepatic internalization of Gd-EOB-DTPA was followed by the paramagnetic relaxation enhancement of the intracellular $^{133}Cs$ ions, and confirmed by parallel quantitations of Gd and Cs run by inductively coupled plasma analysis of liver samples and aliquots of perfusate. Two peaks are observed at -22.0 and -23.5 ppm, with respect to the line of the external reference arbitarily set to 0 ppm. Upon rinsing of the extracellular compartment with regular K-H free of CsCl, the high-field resonance disappears within 20min. The intracellular concentration was confirmed by ICP, which gives a $Cs^+$ content of $22.0\pm3.5mM$. The relaxation data significantly underestimate the Gd content, suggesting a potential compartmentation of $Cs^+$ and the contrast agent.

  • PDF

Fabrication and Performance of Microcolumnar CsI:Tl onto Silicon Photomultiplier (실리콘광증배관 기반의 미세기둥 구조 CsI:Tl 제작 및 평가)

  • Park, Chan-Jong;Kim, Ki-Dam;Joo, Koan-Sik
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.337-343
    • /
    • 2016
  • This study conducted the gamma ray spectroscopic analysis of the microcolumnar CsI:Tl deposited onto the SiPMs using thermal evaporation deposition. The SEM measured thickness of microcolumnar CsI:Tl and of its individual columns. From the SEM observation, the measured thickness of CsI:Tl were $450{\mu}m$ and $600{\mu}m$. The gamma ray spectroscopic properties of microcolumnar CsI:Tl, $450{\mu}m$ and $600{\mu}m$ thick deposited onto the SiPMs were analyzed using standard gamma ray sources $^{133}Ba$ and $^{137}Cs$. The spectroscopic analysis of microcolumnar CsI:Tl deposited onto the SiPMs included the measurements of response linearity over the $^{137}Cs$ gamma ray intensity; and gamma ray energy spectrum. Furthermore from the gamma ray spectrum measurement of $^{133}Ba$ and $^{137}Cs$, $450{\mu}m$ thick CsI:Tl showed good efficiency when measured with $^{133}Ba$ and $600{\mu}m$ thick CsI:Tl was highly efficient when measured with $^{137}Cs$.

Single Crystal 133Cs NMR Study of Cs+(15-Crown-5)2I-

  • Lee, Kang-Yeol;Kim, Tae-Ho;Shin, Yong-Woon;Kim, Jin-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.529-532
    • /
    • 2004
  • Cesium-133 NMR spectra of a single crystal of tetragonal $Cs^+ (15-crown-5)_2I^-$ were obtained as a function of crystal orientation in an applied magnetic field of 9.40T and analyzed to provide the magnitudes and orientations of the $^{133}Cs$ chemical shift and quadrupolar tensors for two magnetically nonequivalent and symmetry related sites. Chemical shift tensor components and parameters of quadrupolar interactions are obtained as ${\delta}_{11}=46(1),\;{\delta}_{22}=60(1),\;{\delta}_{33}=-30(1)$ ppm, quadrupole coupling constant QCC = 581(1) kHz, and asymmetry parameter ${\eta}$ = 0.481(1), respectively. The nonaxially symmetric NMR parameters imply that the local environment of the cesium nuclei is nonaxially symmetric. The DANTE experiment burned holes in the $^{133}Cs$ NMR line of the title compound. The hole burning of the single crystal and powder $^{133}Cs$ NMR lines showed that the NMR lines are not homogeneously broadened.

Entropy, enthalpy, and gibbs free energy variations of 133Cs via CO2-activated carbon filter and ferric ferrocyanide hybrid composites

  • Lee, Joon Hyuk;Suh, Dong Hack
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3711-3716
    • /
    • 2021
  • The addition of ferric ferrocyanide (Prussian blue; PB) to adsorbents could enhance the adsorption performance of 133Cs. Toward this goal, we present a heterogeneously integrated carbonaceous material platform consisting of PB in direct contact with CO2-activated carbon filters (PB-CACF). The resulted sample retains 24.39% more PB than vice versa probed by the ultraviolet-visible spectrometer. We leverage this effect to capture 133Cs in the aqueous environment via the increase in ionic strength and micropores. We note that the amount of PB was likely to be the key factor for 133Cs adsorption compared with specific surface characteristics. The revealed adsorption capacity of PB-CACF was 21.69% higher than the bare support. The adsorption characteristics were feasible and spontaneous. Positive values of 𝜟Ho and 𝜟So show the endothermic nature and increased randomness. Based on the concept of capturing hazardous materials via hazardous materials, our work will be of interest within the relevant academia for collecting radionuclides in a sufficient manner.

Nucleus-phonon interactions of MCsSO4 (M = Na, K, or Rb) single crystals studied using spin-lattice relaxation time

  • Choi, Jae Hun;Kim, Nam Hee;Lim, Ae Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.1
    • /
    • pp.15-23
    • /
    • 2014
  • The structural properties and relaxation processes of $MCsSO_4$ (M = Na, K, or Rb) crystals were investigated by measuring the NMR spectra and spin-lattice relaxation rates $1/T_1$ of their $^{23}Na$, $^{39}K$, $^{87}Rb$, and $^{133}Cs$ nuclei. According to the NMR spectra, the $MCsSO_4$ crystals contain two crystallographically inequivalent sites each for the M and Cs ions. Further, the relaxation rates of all these nuclei do not change significantly over the investigated temperature range, indicating that no phase transitions occur in these crystals in this range. The variations in the $1/T_1$ values of the $^{23}Na$, $^{39}K$, $^{87}Rb$, and $^{133}Cs$ nuclei in these three crystals with increasing temperature are approximately proportional to $T^2$, indicating that Raman processes may be responsible for the relaxation. Therefore, for nuclear quadrupole relaxation of the $^{23}Na$, $^{39}K$, $^{87}Rb$, and $^{133}Cs$ nuclei, Raman processes with n = 2 are more effective than direct processes.

A Study on the Adsorption Kinetics of 133Cs by Different Impregnations of Prussian Blue (프러시안 블루 고정화에 따른 133Cs의 흡착거동 모델링)

  • Choi, S.S.;Lee, Y.J.;Yun, K.J.;Cho, Y.J.;Lee, J.H.;Lee, S.H.
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.1
    • /
    • pp.80-85
    • /
    • 2021
  • Radionuclides, particularly radioactive cesium (Cs), are a concern of human health in some nuclear power accidents. It could lead to a high level of intracellular accumulation due to its high radioactivity and long half-life. Therefore, it is imperative to develop a method to remove Cs from wastewater. Herein, we synthesized activated carbon fibers (ACFs) doped with Prussian blue (PB) via in situ methods. We classified samples by their preparation method as either physical (PB-ACF-A) or physicochemical (PB-ACF-B) syntheses for comparison. The PB-ACF-B sample showed a significant surface loss compared to PB-ACF-A but a better 133Cs adsorption capacity. All samples fit well to Langmuir isotherms and the values of qmax were directly correlated to the amount of PB on the surface of the ACFs. Adsorption characteristics were further confirmed by the calculated free energy, enthalpy, and entropy.

Study on (n, α) reactions for the production of 51Cr, 89Sr, 99Tc, 131I, 133Xe, 137Cs and 153Sm radioisotopes used in nuclear medicine

  • Hallo M. Abdullah;Ali H. Ahmed
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3352-3358
    • /
    • 2023
  • Nuclear medicine seems to be a decent choice of medicine in the recent decade. The radioactive isotopes 51Cr, 89Sr, 99Tc, 131I, 133Xe, 137Cs and 153Sm are extremely essential in nuclear medicine. The excitation functions of the 54Fe (n, α) 51Cr, 92Zr (n, α) 89Sr, 102Rh (n, α) 99Tc, 134Cs (n, α) 131I, 136Ba (n, α) 133Xe, 140La (n, α) 137Cs and 156Gd (n, α) 153Sm reactions were calculated in this study using the EMPIRE 3.2.3 and TALYS 1.95 nuclear codes. Additionally, the cross sections at 14-15 MeV were calculated using empirical formulae and the experimental data. The computer codes were compared to the experimental data and Empirical formulas as well as the evaluated data (TENDL 2021, JENDL 3.3, JENDL 5, JEFF 3.3, EAF 2010, CENDL 3.1, CENDL 3.2, ROSFOND 2010, FENDL 3.2 b, and BROND 3.1).