• Title/Summary/Keyword: $^{111}In$

Search Result 8,964, Processing Time 0.037 seconds

Magnetism of Pd(111) Thin Films: A First-principles Calculation (Pd(111) 박막의 자성: 제일원리계산)

  • Hong, Soon Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Pd has the highest magnetic susceptibility among single element metals and often shows ferromagnetism under some special environments. In this paper, we report magnetism of 5- and 9-monolayers (ML) calculated by using full-potential linearized augmented plane wave method. Exchange-correlation interaction is taken into account in local density approximation (LDA) and generalized gradient approximation (GGA) and calculational results in LDA and GGA are compared with each other. It is found that calculations by LDA are more reliable compared to those by GGA because LDA prediction of paramagnetism of bulk Pd is consistent with experiments, whereas GGA predicts wrongly ferromagnetim of bulk Pd. Calculational results in LDA on a 5-ML Pd(111) thin film shows a ferromagnetic ground state unlike a paramagnetic ground state of bulk Pd. The center Pd layer of the 5-ML Pd(111) thin film has the largest magnetic moment ($0.273{\mu}_B$) among the layers and |m| = 1 orbital states play a dominant role in stabilizing the ferromagnetism of the 5-ML Pd(111) thin film. A 9-ML Pd(111) thin film in a ferromagnetic state has almost the same total energy as in a paramagnetic state. Since the magnetization of the 9-ML Pd(111) thin film is stable, the ferromagnetic state may be meta-stable.

Effect of Mutagenesis of V111 and L112 on the Substrate Specificity of Zymomonas mobilis Pyruvate Decarboxylase

  • Huang, Chang-Yi;Nixon, Peter F.;Duggleby, Ronald G.
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.39-44
    • /
    • 1999
  • Pyruvate decarboxylase (PDC) catalyzes the conversion of pyruvate to acetaldehyde as the penultimate step in alcohol fermentation. The enzyme requires two cofactors, thiamin diphosphate (ThDP) and $Mg^{2+}$, for activity. Zymomonas mobilis PDC shows a strong preference for pyruvate although it will use the higher homologues 2-ketobutyrate and 2-ketovalerate to some extent. We have investigated the effect of mutagenesis of valine 111 and leucine 112 on the substrate specificity. V111 was replaced by glycine, alanine, leucine, and isoleucine while L112 was replaced by alanine, valine, and isoleucine. With the exception of L112I, all mutants retain activity towards pyruvate with $k_{cat}$ values ranging from 40% to 139% of wild-type. All mutants show changes from wild-type in the affinity for ThDP, and several (V111A, L112A, and L112V) show decreases in the affinity for $Mg^{2+}$. Two of the mutants, V111G and V111A, show an increase in the $K_m$ for pyruvate. The activity of each mutant towards 2-ketobutyrate and 2-ketovalerate was investigated and some changes from wild-type were found. For the V111 mutants, the most notable of these is a 3.7-fold increase in the ability to use 2-ketovalerate. However, the largest effect is observed for the L112V mutation which increases the ability to use both 2-ketobutyrate (4.3-fold) and 2-ketovalerate (5.7-fold). The results suggest that L112 and, to a lesser extent, V111 are close to the active site and may interact with the alkyl side-chain of the substrate.

  • PDF

Structural Control and Two-Dimensional Order of Organic Thiol Self-Assembled Monolayers on Au(111)

  • No, Jae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.26-26
    • /
    • 2011
  • Self-assembled monolayers (SAMs) prepared by sulfur-containing organic molecules on metal surfaces have drawn much attention for more than two decades because of their technological applications in wetting, chemical and biosensors, molecular recognition, nanolithography, and molecular electronics. In this talk, we will present self-assembly mechanism and two-dimensional (2D) structures of various organic thiol SAMs on Au(111), which are mainly demonstrated by molecular-scale scanning tunneling microscopy (STM) observation. In addition, we will provide some idea how to control 2D molecular arrangements of organic SAMs. For instance, the formation and surface structure of pentafluorobenzenethiols (PFBT) self-assembled monolayers (SAMs) on Au(111) formed from various experimental conditions were examined by means of STM. Although it is well known that PFBT molecules on metal surfaces do not form ordered SAMs, we clearly revealed for the first time that adsorption of PFBT on Au(111) at $75^{\circ}C$ for 2 h yields long-range, well-ordered self-assembled monolayers having a $(2{\times}5\sqrt{13})R30^{\circ}$ superlattice. Benzenethiols (BT) SAMs on gold usually have disordered phases, however, we have clearly demonstrated that the displacement of preadsorbed cyclohexanethiol self-assembled monolayers (SAMs) on Au(111) by BT molecules can be a successful approach to obtain BT SAMs with long-range ordered domains. Our results will provide new insight into controlling the structural order of BT or PFBT SAMs, which will be very useful in precisely tailoring the interface properties of metal surfaces in electronic devices.

  • PDF

The Behavior of the Formation of (111) Twins in $BaTiO_3$ Synthesized by Sol-Gel Route (졸-겔법으로 제조한 $BaTiO_3$에서(111)쌍정의 생성거동)

  • Yoo, Young-Sung;Kim, Young-Jung;Kim, Hwan
    • Korean Journal of Materials Research
    • /
    • v.6 no.2
    • /
    • pp.175-181
    • /
    • 1996
  • Ti(i-OC3H7)와 Ba(OH)2.8H2Or 그리고 공통용매로서 2-Methoxy Ethanol을 이용하여 균일 용액을 제조하고, 이로부터 미세하고 조성비가 균일한 BaTiO3분말을 제조하였다. 이러한 졸-겔법으로 제조된 분말을 TG-DTA와 XRD 분석으로 결정화 및 상변화를 관찰하였다. 각 온도별로 하소된 분말에서 (111)쌍정의 생성여부를 TEM을 이용해 관찰한 결과, 합성된 BaTiO3 분말에서는 하소중(111)쌍정의 생성이 활발히 일어나지 않는 것으로 판단되었다. 특히(111) 쌍정판은 합성된 겔을 120$0^{\circ}C$에서 하소한 후 이를 140$0^{\circ}C$에서 소결한 경우에만 관찰할 수 있었다. 이러한 하소온도의 영향은 원료분말의 입자크기나 형상이 쌍정 생성에 큰 영향을 미침을 의미하는 것으로, 본 연구에서는 이를 근거하여 (111) 쌍정의 생성에 대해서 고찰하였다.

  • PDF

Au Thin Film Fabrication of <111> Crystal Structure by Effusion Cell Process (Effusion Cell 방식에 의한 <111> 결정구조의 Au 박막의 제작)

  • Pyo Kyung Soo;Kim Kand Dae;Kim Yong Gu;Song Chung Kun
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.383-386
    • /
    • 2004
  • The one of important requisites for fabricating molecular electronic device is the single crystal direction of bottom substrate nowadays. [1,2]. We obtain the optimum SAM result when the Au crystal is <111> structure for Self-Assembled molecular. To get the <111> crystal Au, we generally repeat heating and cooling course after evaporating Au [3]. However, we can fabricate <111> crystal Av thin film except post treatment because we simultaneously evaporate and anneal using Effusion Cell. In this paper, we study on thin film growth of <111> crystal Au as bottom electrode which is essential for Self-Assembled molecular by Effusion Cell and analyze crystal structure, thickness, surface conductivity and so on as each process condition.

  • PDF

Microstructures and Mechanical Properties of GTD 111DS Welds by $CO_2$ Laser Welding ($CO_2$ 레이저를 이용한 GTD111DS 초합금 용접부의 미세조직과 기계적 성질)

  • Lee, Tack-Woon;Yang, Sung-Ho;Kim, Sang-Hun
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.108-108
    • /
    • 2009
  • Precipitation hardening nickel base alloys strengthened by intermetallic compounds are extensively used to manufacture on the components of the hot section of gas turbine engines. To ensure structural stability and maintenance of strength properties for a long time, nickel alloys are normally subjected to complex alloying with elements to form ${\gamma}'$(gamma prime). Such alloys have a limited weldability, are normally welded in high temperature. However, laser welding have a merit that applies in room temperature as easy control of welding parameter and heat input. In this study, $CO_2$ laser welding is applied on STS304 plate with good ductility and precipitation hardening nickel base alloy (GTD111DS) used blade material. Also, several welding parameters are applied on powder, power and travel speed. There are no cracks in Rene 80 and IN 625 powder when STS304 plate is used. But IN 625 powder has no cracks and Rene 80 have some cracks in welds with GTD111DS substrate. Adjusting of welding parameter is tried to apply Rene 80 having a good strength compare to IN 625. In the result of adjusted welding parameter, optimized welding parameters are set with low power, low feed rate and high welding speed. Tensile strength of GTD111DS substrate with Rene 80 powder is same and over than the one of base metal in room temp and high temp($760^{\circ}C$).

  • PDF

Diamond Synthesis by Acetylen Flame (아세틸렌 불꽃에 의한 다이아몬드 합성)

  • 이윤석;박윤휘;이태근;정수진
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.12
    • /
    • pp.926-934
    • /
    • 1992
  • Uniform diamond films in a few $\textrm{mm}^2$ size and locally isolated diamond single crystals in size of 60 $\mu\textrm{m}$ were synthesized on Si-wafer and Al2O3 substrate by the method of acetylene flame. The effects of substrate temperature and flow ratio of oxygen to acetylene on the morphology of deposited diamond were investigated. According to the observations of growth behavior of diamond on Si substrate with respect to substrate surface pretreatment and flow ratio, it was shown that well faceted diamonds could grow uniformly when flow ratio was above 0.9 and substrates were densely scratched. With increasing substrates temperature, the crystal morphology changes from octahedron bounded by only {111} plane below 850$^{\circ}C$ to cubo-octahedron with almost equal development of {111} and {100} plane in the temperature range of 850∼950$^{\circ}C$. Between 950∼1050$^{\circ}C$, the {111} faces become rough and concave. Above 1050$^{\circ}C$, new crystallites begin to grow on concave {111} surface and overall morphology looks like cubo-octahedron with degenerated {111} faces. These changes of morphology can be understood in terms of the different growth mode of each crystallographic plane with respect to the substrate temperature and supersaturation. And the observed phenomena on {111} planes can be related to the face instability and twin generation.

  • PDF

Effect of I/d Parameter on Recrystallization Textures of AA5182 Alloy Sheets (5182 알루미늄 합금판재의 재결정 집합조짓에 대한 I/d 파라메타의 영향)

  • Kim, Kee-Joo;Won, Si-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1086-1093
    • /
    • 2011
  • To fabricate the aluminum alloys with good drawability, the textures evolution of the AA5182 sheets due to the change of lid parameter after rolling and subsequent annealing was studied. The measurement of the deformation textures was carried out for the sheets with high reduction ratio and the change of the recrystallization texture was investigated after heat-treatments of the rolled sheets in various I/d parameters. Rolling without lubrication and subsequent annealing led to the formation of favorable rot-$C_{ND}$ {001}<110> and ${\gamma}$-fiber ND//<111> textures in AA5182 sheets. From the results, the ${\gamma}$-fiber ND//<111> component well evolved during rolling at high lid parameter of 6.77. The initial shear deformation texture, especially, ${\gamma}$-fiber ND//<111> was not rotated during heat treatment in holding time of 180~7,200 seconds on AA5182 with I/d parameter of 6.77. Therefore, the AA5182 sheets were fabricated by controlling I/d parameter having well evolved ${\gamma}$-fiber ND//<111> which was advantageous in good drawability of the sheets.

Preparation of Atomically Flat Si(111)-H Surfaces in Aqueous Ammonium Fluoride Solutions Investigated by Using Electrochemical, In Situ EC-STM and ATR-FTIR Spectroscopic Methods

  • Bae, Sang-Eun;Oh, Mi-Kyung;Min, Nam-Ki;Paek, Se-Hwan;Hong, Suk-In;Lee, Chi-Woo J.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1822-1828
    • /
    • 2004
  • Electrochemical, in situ electrochemical scanning tunneling microscope (EC-STM), and attenuated total reflectance-FTIR (ATR-FTIR) spectroscopic methods were employed to investigate the preparation of atomically flat Si(111)-H surface in ammonium fluoride solutions. Electrochemical properties of atomically flat Si(111)-H surface were characterized by anodic oxidation and cathodic hydrogen evolution with the open circuit potential (OCP) of ca. -0.4 V in concentrated ammonium fluoride solutions. As soon as the natural oxide-covered Si(111) electrode was immersed in fluoride solutions, OCP quickly shifted to near -1 V, which was more negative than the flat band potential of silicon surface, indicating that the surface silicon oxide had to be dissolved into the solution. OCP changed to become less negative as the oxide layer was being removed from the silicon surface. In situ EC-STM data showed that the surface was changed from the initial oxidecovered silicon to atomically rough hydrogen-terminated surface and then to atomically flat hydrogenterminated surface as the OCP moved toward less negative potentials. The atomically flat Si(111)-H structure was confirmed by in situ EC-STM and ATR-FTIR data. The dependence of atomically flat Si(111)-H terrace on mis-cut angle was investigated by STM, and the results agreed with those anticipated by calculation. Further, the stability of Si(111)-H was checked by STM in ambient laboratory conditions.