Browse > Article
http://dx.doi.org/10.5012/bkcs.2004.25.12.1822

Preparation of Atomically Flat Si(111)-H Surfaces in Aqueous Ammonium Fluoride Solutions Investigated by Using Electrochemical, In Situ EC-STM and ATR-FTIR Spectroscopic Methods  

Bae, Sang-Eun (College of Science and Technology, Korea University)
Oh, Mi-Kyung (College of Science and Technology, Korea University)
Min, Nam-Ki (College of Science and Technology, Korea University)
Paek, Se-Hwan (College of Science and Technology, Korea University)
Hong, Suk-In (College of Science and Technology, Korea University)
Lee, Chi-Woo J. (College of Science and Technology, Korea University)
Publication Information
Abstract
Electrochemical, in situ electrochemical scanning tunneling microscope (EC-STM), and attenuated total reflectance-FTIR (ATR-FTIR) spectroscopic methods were employed to investigate the preparation of atomically flat Si(111)-H surface in ammonium fluoride solutions. Electrochemical properties of atomically flat Si(111)-H surface were characterized by anodic oxidation and cathodic hydrogen evolution with the open circuit potential (OCP) of ca. -0.4 V in concentrated ammonium fluoride solutions. As soon as the natural oxide-covered Si(111) electrode was immersed in fluoride solutions, OCP quickly shifted to near -1 V, which was more negative than the flat band potential of silicon surface, indicating that the surface silicon oxide had to be dissolved into the solution. OCP changed to become less negative as the oxide layer was being removed from the silicon surface. In situ EC-STM data showed that the surface was changed from the initial oxidecovered silicon to atomically rough hydrogen-terminated surface and then to atomically flat hydrogenterminated surface as the OCP moved toward less negative potentials. The atomically flat Si(111)-H structure was confirmed by in situ EC-STM and ATR-FTIR data. The dependence of atomically flat Si(111)-H terrace on mis-cut angle was investigated by STM, and the results agreed with those anticipated by calculation. Further, the stability of Si(111)-H was checked by STM in ambient laboratory conditions.
Keywords
Si(III)-H; EC-STM; ATR-FTIR; Ammonium fluoride; Electrochemistry;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 /
[ Ree, J.;Chang, K.;Kim, Y.H. ] / Bull. Korean Chem. Soc.   DOI   ScienceOn
2 Yau, S.; Fan, F. F.; Bard, A. J. J. Electrochem. Soc. 1992, 139,2825.   DOI
3 Ree, J.; Chang, K.; Kim, Y. H.; Shin, H. K. Bull. Korean Chem.Soc. 2003, 24, 986.   DOI   ScienceOn
4 Pietsch, G. J.; Kohler, U.; Henzler, M. J. Appl. Phys. 1993, 73,4797.   DOI   ScienceOn
5 Houbertz, R.; Memert, U.; Behm, R. J. Surf. Sci. 1998, 396, 198.   DOI   ScienceOn
6 Niwano, M.; Kondo, U.; Kimura, Y. J. Electrochem. Soc. 2000,147, 1555.   DOI   ScienceOn
7 Gerischer, H.; Lubke, M. Ber. Bunsenges. Phys. Chem. 1987, 91,394.   DOI
8 Ree, J.; Chang, K.; Kim, Y. H. Bull. Korean Chem. Soc. 2002, 23,205.   DOI   ScienceOn
9 Neuwald, U.; Hessel, H. E.; Feltz, A.; Memmert, U.; Behm, R. J.Appl. Phys. Lett. 1992, 60, 1307.   DOI
10 Tomiat, E.; Matsuda, N.; Itaya, K. J. Vac. Sci. Technol. A 1990, 8,534.   DOI
11 Lee, I.-C.; Bae, S.-E.; Song, M.-B.; Lee, J.-S.; Paek, S.-H.; Lee,C.-W. J. Bull. Korean Chem. Soc. 2004, 25, 167.   DOI   ScienceOn
12 Weldon, M. K.; Queeney, K. T.; Eng, J., Jr; Raghavachari, K.;Chabal, Y. J. Surf. Sci. 2002, 500, 859.   DOI   ScienceOn
13 Cai, W.; Lin, Z.; Strother, T.; Smith, L. M.; Hamers, R. J. J. Phys.Chem. B 2002, 160, 2656.
14 Chelma, M.; Homma, T.; Bertagna, V.; Erre, R.; Kubo, N.; Osaka,T. J. Electroanal. Chem. 2003, 559, 111.   DOI   ScienceOn
15 Jakob, P.; Chabal, Y. J. J. Chem. Phys. 1991, 95, 2897.   DOI
16 Ye, S.; Ichihara, T.; Uosaki, K. Appl. Phys. Lett. 1999, 75, 1562.   DOI
17 Higashi, G. S.; Chabal, Y. J.; Trucks, G. W.; Raghavachari, K. Appl. Phys. Lett. 1990, 56, 656.   DOI
18 Kim, Y.; Lieber, C. M. J. Am. Chem. Soc. 1991, 113, 2333.   DOI
19 Hurley, P. T.; Ribbe, A. E.; Buriak, J. M. J. Am. Chem. Soc. 2003,125, 11334.   DOI   ScienceOn
20 Nakamura, M.; Song, M.-B.; Ito, M. Electrochim. Acta 1996, 41,681.   DOI   ScienceOn
21 Hines, M. A. Int. Rev. Phys. Chem. 2001, 20, 645.   DOI   ScienceOn
22 Matsumura, M.; Fukidome, H. J. Electrochem. Soc. 1996, 143,2683.   DOI   ScienceOn
23 Kern, W. J. Electrochem. Soc. 1990, 137, 1887.   DOI
24 Song, M.-B.; Jang, J.-M.; Lee, C.-W. Bull. Korean Chem. Soc.2002, 23, 71.   DOI   ScienceOn
25 Allongue, P.; KieLing, V.; Gerischer, H. Electrochim. Acta 1995,40, 1353.   DOI   ScienceOn
26 Allongue, P.; Villeneuve, C. H. de; Morin, S.; Boukherroub, R.;Wayner, D. D. M. Electrochim. Acta 2000, 45, 4591.   DOI   ScienceOn
27 Bae, S.-E.; Lee, C.-W. J. Extended Abstracts of 205th ECSMeeting, 174, 2004.
28 Woo, D.-H.; Yoo, J.-S.; Park, S.-M.; Jeon, I.-C.; Kang, H. Bull.Korean Chem. Soc. 2004, 25, 577.   DOI   ScienceOn
29 Kaji, K.; Yau, S.-L.; Itaya, K. J. Appl. Phys. 1995, 78, 5727.   DOI   ScienceOn