• 제목/요약/키워드: $^{11}C$ target

검색결과 340건 처리시간 0.029초

Effects of Isocitrate Lyase Inhibitors on Spore Germination and Appressorium Development in Magnaporthe grisea

  • Kim Seung-Young;Park Jin-Soo;Oh Ki-Bong
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권7호
    • /
    • pp.1158-1162
    • /
    • 2006
  • The glyoxylate cycle can conserve carbons and adequately supply tricarboxylic acid (TCA) cycle intermediates for biosynthesis when microorganisms grow on $C_{2}$ carbon sources. It has been reported that isocitrate lyase (ICL1), a key enzyme of the glyoxylate cycle, is highly induced when Magnaporthe grisea, the causal agent of rice blast, infects its host. Therefore, the glyoxylate cycle is considered as a new target for antifungal agents. A 1.6-kb DNA fragment encoding the ICL1 from M. grisea KJ201 was amplified by PCR, cloned into a vector providing His-tag at the N-terminus, expressed in Escherichia coli, and purified using Ni-NTA affinity chromatography. The molecular mass of the purified ICL1 was approximately 60 kDa, as determined by SDS-PAGE. The ICL1 inhibitory effects of TCA cycle intermediates and their analogs were investigated. Among them, 3-nitropropionate was found to be the strongest inhibitor with an $IC_{50}$ value of $11.0{\mu}g/ml$. 3-Nitropropionate inhibited the appressorium development in M. grisea at the ${\mu}M$ level, whereas conidia germination remained unaffected. This compound also inhibited the mycelial growth of the fungus on minimal medium containing acetate as a $C_{2}$ carbon source. These results suggest that ICL1 plays a crucial role in appressorium formation of M. grisea and is a new target for the control of phytopathogenic fungal infection.

Homology Modeling of Chemokine Receptor CXCR3: A Novel Therapeutic Target against Inflammatory Diseases

  • M, Shalini;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제8권3호
    • /
    • pp.164-175
    • /
    • 2015
  • CXCR3 is a C-X-C chemokine receptor type 3 also known as GPR9 and CD183. CXCR3 is a G-Protein coupled chemokine receptor which interacts with three endogenous interferon inducible chemokine's (CXCL9, CXCL10 and CXCL11) and is proved to play a vital role in the Th1 inflammatory responses. CXCR3 has been implicated to be associated with various disease conditions like inflammatory diseases, autoimmune diseases, type I diabetes and acute cardiac allograft rejection. Therefore CXCR3 receptor is found to be an attractive therapeutic target for the treatment of inflammatory diseases. Inorder to decipher the biological function of a CXCR3, 3D structure is of much important but the crystal structure for CXCR3 has not yet been resolved. Hence, in the current study Homology modeling of CXCR3 was performed against various templates and validated using different parameters to suggest the best model for CXCR3. The reported best model can be used for further studies such as docking to identify the important binding site residues.

Rapamycin Inhibits Expression of Elongation of Very-long-chain Fatty Acids 1 and Synthesis of Docosahexaenoic Acid in Bovine Mammary Epithelial Cells

  • Guo, Zhixin;Wang, Yanfeng;Feng, Xue;Bao, Chaogetu;He, Qiburi;Bao, Lili;Hao, Huifang;Wang, Zhigang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권11호
    • /
    • pp.1646-1652
    • /
    • 2016
  • Mammalian target of rapamycin complex 1 (mTORC1) is a central regulator of cell growth and metabolism and is sufficient to induce specific metabolic processes, including de novo lipid biosynthesis. Elongation of very-long-chain fatty acids 1 (ELOVL1) is a ubiquitously expressed gene and the product of which was thought to be associated with elongation of carbon (C) chain in fatty acids. In the present study, we examined the effects of rapamycin, a specific inhibitor of mTORC1, on ELOVL1 expression and docosahexaenoic acid (DHA, C22:6 n-3) synthesis in bovine mammary epithelial cells (BMECs). We found that rapamycin decreased the relative abundance of ELOVL1 mRNA, ELOVL1 expression and the level of DHA in a time-dependent manner. These data indicate that ELOVL1 expression and DHA synthesis are regulated by mTORC1 in BMECs.

이중 타겟의 동시 스퍼터링을 이용한 CuNi 박막 제작시 증착변수가 박막의 물성에 미치는 영향 (Effects of Deposition Conditions on Properties of CuNi thin Films Fabricated by Co-Sputtering of Dual Targets)

  • 서수형;이재엽;박창균;박진석
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권1호
    • /
    • pp.11-16
    • /
    • 2001
  • CuNi alloy films are deposited by co-sputtering of dual targets (Cu and Ni, respectively). Effects of the co-sputtering conditions, such as powers applied to the targets, deposition pressures, and substrate temperatures, on the structural and electrical properties of deposited films are systematically investigated. The composition ratio of Ni/Cu is almost linearly decreased by increasing the DC power applied to the Cu target from 25.6 W to 69.7 W with the RF power applied to the Ni target unchanged(140 W). it is noted that the chamber pressure during deposition and the film thickness give rise to a change of the Ni/Cu ratio within the films deposited. The former may be due to a higher sputtering yield of Cu atom and the latter due to the re-sputtering phenomenon of Cu atoms on the surface of deposited film. The film deposited at higher pressures or at lower substrate temperatures have a smaller crystallite size, a higher electrical resistivity, and much more voids. This may be attributed to a lower surface mobility of sputtered atoms over the substrate.

  • PDF

오이 모자이크 바이러스 As계통 외피단백질 유전자의 식물체 형질질환을 위한 발현벡타의 구축 (Construction of a Plant Expression Vector for the Coat Protein Gene of Cucumber Mosaic Virus-As Strain for Plant Transformation)

  • 류기현;박원목
    • 한국식물병리학회지
    • /
    • 제11권1호
    • /
    • pp.66-72
    • /
    • 1995
  • The coat protein (CP) gene of cucumber mosaic virus-As (CMV-As) strain was engineered for expression in the plant by using the cauliflower mosaic virus 35S transcript regulatory sequences. The CP gene was cloned into an Agrobacterium-derived binary vector. A chimeric gene was constructed by the cDNA of CMV-As CP and plant expression vector pBI121. The clone, pCMAS66, was first introduced into the phagemid vector pSPORT1 for situating sense orientation for translation and making restriction sites in order to re-introduce plant expression vector, pHI121. The resulting subclone pCASCP02 and plant expression vector pBI121 were treated with BamHI-SacI for excising the target gene and removing GUS gene, respectively. After Agrobacterium transformation by freeze-thaw technique, the clone, pCMASCP121-123 which contains sense orientation of the target gene, was selected and confirmed by restriction endonuclease analysis. The CMV-As CP gene was introduced into A. tumefaciens. The results on tobacco plant transformation with the vector system revealed that the system could be successfully introduced and showed high frequency of selection to putative transformations.

  • PDF

C4orf47 is a Novel Prognostic Biomarker and Correlates with Infiltrating Immune Cells in Hepatocellular Carcinoma

  • Hye-Ran Kim;Choong Won Seo;Sang Jun Han;Jongwan Kim
    • 대한의생명과학회지
    • /
    • 제29권1호
    • /
    • pp.11-25
    • /
    • 2023
  • In hepatocellular carcinoma (HCC), chromosome 4 open-reading frame 47 (C4orf47) has not been so far investigated for its prognostic value or association with infiltrating immune cells. We performed bioinformatics analysis on HCC data and analyzed the data using online databases such as TIMER, UALCAN, Kaplan-Meier plotter, LinkedOmics, and GEPIA2. We found that C4orf47 expression in HCC was higher compared to normal tissues. High C4orf47 expression was associated with a worse prognosis in HCC. The correlation between C4orf47 and infiltrating immune cells is positively associated with CD4+T cells, B cells, neutrophils, macrophages, and dendritic cells in HCC. Moreover, high C4orf47 expression was correlated with a poor prognosis of infiltrating immune cells. Analysis of C4orf47 gene co-expression networks revealed that 12501 genes were positively correlated with C4orf47, whereas 7200 genes were negatively correlated. The positively related genes of C4orf47 are associated with a high hazard ratio in different types of cancer, including HCC. Regarding the biological functions of C4orf47 gene, it mainly regulates RNA metabolic process, DNA replication, and cell cycle. The C4orf47 gene may play a prognostic role by regulating the global transcriptome process in HCC. Our findings demonstrate that high C4orf47 expression correlates with poor prognosis and tumor-infiltrating immune cells in HCC. We suggest that C4orf47 is a novel prognostic biomarker and potential immune therapeutic target for HCC.

Peroxisome proliferator-activated receptor $\alpha$(PPAR$\alpha$) and its clinical significance

  • 윤미정
    • 한국동물학회:뉴스레터
    • /
    • 제18권2호
    • /
    • pp.6-11
    • /
    • 2001
  • Peroxisome proliferator-activated receptor $\alpha$ (PPAR$\alpha$)에 대한 본격적인 연구는 고지혈증 치료제인 fibrate류의 약물들이 PPAR$\alpha$ activator로 작용한다는 사실이 밝혀짐으로써 크게 증대되었다. PPAR$\alpha$는 fibrate를 포함한 다양한 종류의 peroxisome proiferator (PP)에 의해 활성화되는데 이들을 쥐에 단기간 투여할 경우 간의 peroxisome수와 지 방산 산화효소의 유전자발현이 증가되고 장기간 투여 할 경우 간암을 발생시키지만, fibrate류의 약물들을 고지혈증 환자에게 투여 할 경우 간암을 발생시키지 않으므로써 PP에 대한 반응성에 있어서 species difference를 나타낸다 PPAR$\alpha$는 핵에 존재하는 orphan receptor로서 PP에 의해 활성화되어 9-cis-retinoic acid receptor(RXR)와 heterodimer를 이룬 후 target gene들의 upstream에 있는 peroxisome proliferator response element (PPRE)에 결합하여 target gene들의 발현을 조절한다. 지금까지 연구된 PPAR$\alpha$의 target gene들은 모두 lipid와 lipoprotein 대사를 조절하는 것으로 알려져 있으며, 이러 한 결과들을 기초로 lipid 대사 및 energy balance와 관련된 질병들 - 동맥경화증, 관상동맥질환, 비만, 제 2형 당뇨병 등에서 PPAR$\alpha$의 역할이 집중적으로 연구되고 있다. PPAR$\alpha$가 활성화되면 lipoprotein lipase와 HDL이 증가되고 apo C-III가 감소됨으로써 동맥경화증에 대한 예방적 기능을 나타내고, 몸무게를 감소시킴으로써 비만을 방지할 수 있으며, 인슐린 감수성을 증가시켜 제 2형 당뇨병의 치료효과를 가지는 것으로 보인다. 그러나 PPAR$\alpha$-null mouse에서는 이러한 효과들이 나타나지 않는 것으로 보아 이들 질병에서 PPAR$\alpha$가 중요한 역할을 하는 것으로 생각된다.

  • PDF

Real-Time Detection of DNA Hybridization Assay by Using Evanescent Field Microscopy

  • Kim, Do-Kyun;Choi, Yong-Sung;Murakami, Yuji;Tamiya, Eiichi;Kwon, Young-Soo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제11C권3호
    • /
    • pp.85-90
    • /
    • 2001
  • The determination of DNA hybridization reaction can apply the molecular biology research, clinic diagnostics, bioengineering, environment monitoring, food science and other application area. So, the improvement of DNA detection system is very important for the determination of this hybridization reaction. In this study, we report the characterization of the probe and target oligonucleotide hybridization reaction using the evanescent field microscopy. First, we have fabricated DNA chip microarray. The particles which were immobilized oligonucleotides were arranged by the random fluidic self-assembly on the pattern chips, using hydrophobic interaction. Second, we have detected DNA hybridization reaction using evanescent field microscopy. The 5'-biotinylated probe oligonucleotides were immobilized on the surface of DNA chip microarray and the hybridization reaction with the Rhodamine conjugated target oligonucleotide was excited fluorescence generated on the evanescent field microscopy. In the foundation of this result, we could be employed as the basis of a probe olidonucleotide, capable of detecting the target oligonucleotide and monitoring it in a large analyte concentration range and various mismatching condition.

  • PDF

IEEE 802-11a 무선 LAN 모델의 하드웨어/소프트웨어 통합 설계 방안 (Study on Hardware/Software Codesign of IEEE 802.1la Wireless LAN)

  • 이서구;신형식;정윤호;김재석;서정욱;최종찬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.461-464
    • /
    • 2002
  • OFDM is a promising technology for high speed multimedia communication. In this paper, Software IPs for IEEE 802.11a OFDM system are designed and optimized for TI's TMS320C6201 fixed-point DSP. Then considering the execution cycles of the target DSP for each functions of the system, an efficient HW/SW partitioning method is proposed and according to this results, high speed Viterbi decoder hardware IP for 802.11a system is designed and verified.

  • PDF

Production of pediocin by Chemical Synthesis and Bactericidal Mode of Action

  • Koo, Min-Seon;Kim, Wang-June;Kwon, Dea-Young;Min, Kyung-Hee
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2001년도 Proceedings of 2001 International Symposium
    • /
    • pp.149-153
    • /
    • 2001
  • To investigate the mode of bactericidal action for antimicrobial peptide, pediocin, synthetic and mutant pediocins were prepared by direct chemical synthesis. Native pediocin was purified from Pedio-coccus acidilactici M and its conformational structure and bactericidal functions were analyzed and compared to synthetic pediocin. Schematic mode of pediocin actions, how pediocin binds on the target cell membrane, penetrates and makes tunnel are proposed. For these purposes, primary and secondary structures of pediocin was analyzed and disulfide bond assignment was also done. The pediocin purified from P. acidilactici M had high effective bactericidal ability against gram positive bacteria, especially Listeria monocytogenes and was very stable at extreme pHs and even at high temperatures such as autoclaving temperature (121$^{\circ}C$). Pediocin was consisted of 44 amino acids with four cysteines. Novel synthetic peptides were achieved by solid phase peptide synthesis(SPPS) method. To explain the function of cysteine in C-terminal region, mutant pediocin, Ped[C24A+C44A], was synthesized and their structural and biological functions were analyzed. Second mutant pediocin, Ped[KllE], was prepared to explain the function of lysine at 11 of N-terminal part of pediocin, especially loop of $\beta$-sheet, and to predict the initial binding site of pediocin. The native and synthetic pediocins was showed random coil conformation by spectropolarimetry in moderate conditions. This conformation was observed in extreme conditions such as high temperature and low and high pHs, also. Circular dichroism(CD) data also showed the existence of $\beta$-turn structure in N-terminal part both native and synthetic pediocins. A structural model for pediocin predicts that 18 amino acids in the N-terminal part of the peptide assume a three-strand $\beta$-sheet conformation. This random coil in C-terminal part of pediocin was converted to folding structure, helix structure, in nonpolar solvents such as alcohol and TFE. The disulfide bond between $^{9}$ Cys and $^{14}$ Cys was concrete and inevitable, however, evidences of disulfide bond between $^{24}$ Cys and $^{44}$ Cys was not. Data of Ped[C24A+C44A], pediocin mutant showed that $^{44}$ Cys was required during killing the target cells but not inevitable, since Ped[C24A+C44A] still have bactericidal activity but much less than native pediocin. Another pediocin mutant, Ped[KllE], had still bactericidal activity, was controversial to propose that positive charge like as $^{11}$ Lys in loop or hinge in bacteriocin bound or helped to binding to microorganism with electrostatic interaction between cell membrane especially teichoic acid and positive amino acid nonspecifically. The conformation of pediocin among native, synthetic and mutant pediocins did not show big difference. The conformations between oxidized and reduced pediocin were almost similar regardless of native or synthetic.

  • PDF