Browse > Article
http://dx.doi.org/10.13160/ricns.2015.8.3.164

Homology Modeling of Chemokine Receptor CXCR3: A Novel Therapeutic Target against Inflammatory Diseases  

M, Shalini (Department of Bioinformatics, School of Bioengineering, SRM University)
Madhavan, Thirumurthy (Department of Bioinformatics, School of Bioengineering, SRM University)
Publication Information
Journal of Integrative Natural Science / v.8, no.3, 2015 , pp. 164-175 More about this Journal
Abstract
CXCR3 is a C-X-C chemokine receptor type 3 also known as GPR9 and CD183. CXCR3 is a G-Protein coupled chemokine receptor which interacts with three endogenous interferon inducible chemokine's (CXCL9, CXCL10 and CXCL11) and is proved to play a vital role in the Th1 inflammatory responses. CXCR3 has been implicated to be associated with various disease conditions like inflammatory diseases, autoimmune diseases, type I diabetes and acute cardiac allograft rejection. Therefore CXCR3 receptor is found to be an attractive therapeutic target for the treatment of inflammatory diseases. Inorder to decipher the biological function of a CXCR3, 3D structure is of much important but the crystal structure for CXCR3 has not yet been resolved. Hence, in the current study Homology modeling of CXCR3 was performed against various templates and validated using different parameters to suggest the best model for CXCR3. The reported best model can be used for further studies such as docking to identify the important binding site residues.
Keywords
CXCR3; Homology Modeling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Homey, Chemokines and chemokine receptors as targets in the therapy of psoriasis, Curr. Drug Targets-Inflammation & Allergy, Vol. 3, pp. 169-174, 2004.   DOI
2 X. Ma, K. Norsworthy, N. Kundu, W. H. Rodgers, P. A. Gimotty, O. Goloubeva, M. Lipsky, Y. Li, D. Holt, and A. Fulton, CXCR3 expression is associated with poor survival in breast cancer and promotes metastasis in a murine model, Mol. Cancer Ther., Vol. 8, pp. 490-498, 2009.   DOI   ScienceOn
3 S. H. Kim, G. N. Anilkumar, L. G. Zawacki, Q. Zenga, D.-Y. Yang, Y. Shao, G. Dong, X. Xu, W. Yu, Y. Jiang, C.-H. Jenh, J. W. Hall III, C. D. Carroll, D. W. Hobbs, J. J. Baldwin, B. F. McGuinness, S. B. Rosenblum, J. A. Kozlowski, B. B. Shankar, N.-Y. Shih, III. Identification of novel CXCR3 chemokine receptor antagonists with a pyrazinylpiperazinyl-piperidine scaffold, Bioorg. Med. Chem. Lett., Vol. 21, pp. 6982-6986, 2011.   DOI   ScienceOn
4 S. Bastani, W. Sherman, G. T. Schnickel, G. R. Hsieh, George, R. Bhatia, M. C. Fishbein, A. Ardehali, "Chemokine receptor blockade with a synthetic non-peptide compound attenuates cardiac allograft vasculopathy, Transplantation, Vol. 88, pp. 995-1001, 2009.   DOI   ScienceOn
5 S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, "Basic local alignment search tool, J. Mol. Biol., Vol. 215, pp. 403-410, 1990.   DOI
6 H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne, "The protein data bank, Nucleic Acids Res., Vol. 28, pp. 235-242, 2000.   DOI
7 J. D. Thompson, D. G. Higgins, and T. J. Gibson, "CLUSTAL W: improving the sensitivity of progressive sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., Vol. 22, pp. 4673-4680, 1994.   DOI
8 B. K. Kuntal, P. Aparoy, and P. Reddanna, "Easy modeller: A graphical interface to modeller, BMC Research Notes, Vol. 3, pp. 226, 2010.
9 N. Eswar, M. A. Marti-Renom, B. Webb, M. S. Madhusudhan, D. Eramian, M. Shen, U. Pieper, and A. Sali, "Comparative protein structure modelling with Modeller, Current Protocols in Bioinformatics, Vol. 5, pp. 1-5, 2006.
10 A. Bagaria, V. Jaravine, Y. J. Huang, G. T. Montelione, and P. Guntert, "Protein structure validation by generalized linear model root-meansquare deviation prediction, Protein Sci., Vol. 21, pp. 229-238, 2012.   DOI
11 S. A. Hollingsworth and P. A. Karplus, A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins, Biomolecular Concepts, Vol. 1, pp. 3-4, 2010.
12 C. Colovos and T. O. Yeates, "Verification of protein structures: patterns of nonbonded atomic interactions, Protein Sci., Vol. 2, pp. 1511-1519, 1993.   DOI   ScienceOn
13 Y. Shao, G. N. Anilkumar, C. D. Carroll, G. Dong, J. W. Hall III, D. W. Hobbs, Y. Jiang, C.-H. Jenh, S. H. Kim, J. A. Kozlowski, B. F. McGuinness, S. B. Rosenblum, I. Schulman, N.-Y. Shih, Y. Shu, M. K. C. Wong, W. Yu, L. G. Zawacki, and Q. Zeng, II. SAR studies of pyridyl-piperazinyl-piperidine derivatives as CXCR3 chemokine antagonists, Bioorg. Med. Chem. Lett., Vol. 21, pp. 1527-1531, 2011.   DOI   ScienceOn
14 Y. Wanga, J. Busch-Petersen, F. Wang, T. J. Kiesow, T. L. Graybill, J. Jin, Z. Yang, J. J. Foley, G. E. Hunsberger, D. B. Schmidt, H. M. Sarau, E. A. Capper-Spudich, Z. Wu, L. S. Fisher, M. S. McQueney, R. A. Rivero, and K. L. Widdowson, Camphor sulfonamide derivatives as novel, potent and selective CXCR3 antagonists, Bioorg. Med. Chem. Lett., Vol. 19, pp.114-118, 2009.   DOI   ScienceOn
15 A. G. Nair, M. K. C. Wong, Y. Shu, Y. Jiang, C.-H. Jenh, S. H. Kim, D.-Y. Yang, Q. Zeng, Y. Shao, L. G. Zawacki, J. Duo, B. F. McGuinness, C. D. Carroll, D. W. Hobbs, N.-Y. Shih, S. B. Rosenblum, and J. A. Kozlowski, "Discovery of CXCR3 antagonists substituted with heterocycles as amide surrogates: Improved PK, hERG and metabolic profiles, Bioorg. Med. Chem. Lett., Vol. 24, pp. 1085-1088, 2014.   DOI   ScienceOn
16 J. Liu, Z. Fu, A.-R. Li, M. Johnson, L. Zhu, A. Marcus, J. Danao, T. Sullivan, G. Tonn, T. Collins, and J. Medina, Optimization of a series of quinazolinone-derived antagonists of CXCR3, Bioorg. Med. Chem. Lett., Vol. 19, pp. 5114-5118, 2009.   DOI   ScienceOn
17 A. G. Cole, I. L. Stroke, M.-R. Brescia, S. Simhadri, J. J. Zhang, Z. Hussain, M. Snider, C. Haskell, S. Ribeiro, K. C. Appell, I. Henderson, and M. L. Webb, Identification and initial evaluation of 4-Naryl-[1, 4] diazepane ureas as potent CXCR3 antagonists, Bioorg. Med. Chem. Lett., Vol. 16, pp. 200-203, 2006.   DOI   ScienceOn
18 X. Du, X. Chen, J. T. Mihalic, J. Deignan, J. Duquette, A.-R. Li, B. Lemon, J. Ma, S. Miao, K. Ebsworth, T. J. Sullivan, G. Tonn, T. L. Collins, and J. C. Medina, "Design and optimization of imidazole derivatives as potent CXCR3 antagonists, Bioorg. Med. Chem. Lett., Vol. 18, pp. 608-613, 2008.   DOI   ScienceOn
19 X. Chen, J. Mihalic, J. Deignan, D. J. Gustin, J. Duquette, X. Du, J. Chan, Z. Fu, M. Johnson, A.-R. Li, K. Henne, T. Sullivan, B. Lemon, J. Ma, S. Miao, G. Tonn, T. Collins, and J. C. Medina, Discovery of potent and specific CXCR3 antagonists, Bioorg. Med. Chem. Lett., Vol. 22, pp. 357-362, 2012.   DOI   ScienceOn
20 G. Thoma, R. Baenteli, I. Lewis, T. Wagner, L. Oberer, W. Blum, F. Glickman, M. B. Streiff, and H.-G. Zerwes, Special ergolines are highly selective, potent antagonists of the chemokine receptor CXCR3: Discovery, characterization and preliminary SAR of a promising lead, Bioorg. Med. Chem. Lett., Vol. 19, pp.6185-6188, 2009.   DOI   ScienceOn
21 G. Thoma, R. Baenteli, I. Lewis, D. Jones, J. Kovarik, M. B. Streiff, and H.-G. Zerwes, Special ergolines efficiently inhibit the chemokine receptor CXCR3 in blood, Bioorg. Med. Chem. Lett., Vol. 21, pp.4745-4749, 2011.   DOI   ScienceOn
22 S. Storelli, P. Verdijk, D. Verzijl, H. Timmerman, A. C. van de Stolpe, C. P. Tensen, M. J. Smit, I. J. P. De Esch, and R. Leurs, Synthesis and structure-activity relationship of 3-phenyl-3H-quinazolin-4-one derivatives as CXCR3 chemokine receptor antagonists, Bioorg. Med. Chem. Lett., Vol. 15, pp. 2910-2913, 2005.   DOI   ScienceOn
23 G. Thoma, , R. Baenteli, I. Lewis, T. Wagner, L. Oberer, W. Blum, F. Glickman, M. B. Streiff, and H.-G. Zerwes, Special ergolines are highly selective, potent antagonists of the chemokine receptor CXCR3: Discovery, characterization and preliminary SAR of a promising lead, Bioorg. Med. Chem. Lett., Vol. 19, pp. 6185-6188, 2009.   DOI   ScienceOn