• Title/Summary/Keyword: $^+$ ion beam bombardment

Search Result 61, Processing Time 0.031 seconds

SOLID STATE CESIUM ION BEAM SPUTTER DEPOSITION

  • Baik, Bong-Koo;Choi, Dong-Jun;Han, Dong-Won;Kim, Yong-Hwan;Kim, Seong-In
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.474-477
    • /
    • 1996
  • The solid state cesium ion beam sputter deposition system has been developed for negative carbon ion beam deposition. The negative carbon ion beams are effectively produced by cesium ion bombardment. The C-ion beam current and deposition energy can be independently controlled for the deposition of a-D films. This system is very compact, reliable and high flux without any gas discharge or plasma and has been successfully used in the studies of the ion beam deposited amorphous diamond(a-D)

  • PDF

Preparation and characterization of Zinc Oxide films deposition by (PVD) (PVD 코팅법에 의한 ZnO제조 및 특성)

  • Kim, Sung Jin;Pak, Hunkyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.95.1-95.1
    • /
    • 2010
  • Transparent conducting ZnO films were deposited to apply DSSC Substrate on glass substrates at $500^{\circ}C$ by ionbeam-assisted deposition. Crystallinity, microstructure, surface roughness, chemical composition, electrical and optical properties of the films were investigated as a function of deposition parameters such as ion energy, and substrate temperature. The microstructure of the polycrystalline ZnO films on the glass substrate were closely related to the oxygen ion energy, arrival ratio of oxygen to Zinc Ion bombarded on the growing surface. The main effect of energetic ion bombardment on the growing surface of the film may be divided into two categories; 1) the enhancement of adatom mobility at low energetic ion bombardment and 2) the surface damage by radiation damage at high energetic ion bombardment. The domain structure was obtained in the films deposited at 300 eV. With increasing the ion energy to 600 eV, the domain structure was changed into the grain structure. In case of the low energy ion bombardment of 300 eV, the microstructure of the film was changed from the grain structure to the domain structure with increasing arrival ratio. At the high energy ion bombardment of 600 eV, however, the only grain structure was observed. The electrical properties of the deposited films were significantly related to the change of microstructure. The films with the domain structure had larger carrier concentration and mobility than those with the grain structure, because the grain boundary scattering was reduced in the large size domains compared with the small size grains. The optical transmittance of ZnO films was dependent on a surface roughness. The ZnO films with small surface roughness, represented high transmittance in the visible range because of a decreased light surface scattering. By varying the ion energy and arrival ratio, the resistivity and optical transmittance of the films were varied from $1.1{\times}10^{-4}$ to $2.3{\times}10^{-2}{\Omega}cm$ and from 80 to 87%, respectively. The ZnO film deposited at 300 eV, and substrate temperature of $500^{\circ}C$ had the resistivity of $1.1{\times}10^{-4}{\Omega}cm$ and optical transmittance of 85% in visible range. As a result of experiments, we provides a suggestition that ZnO thin Films can be effectively used as the DSSC substrate Materials.

  • PDF

Studies of the $TiO_2-Si$ Interface Bombarded by $Ar^+$ Ion Beam

  • Zhang, J.;Huang, N.K.;Lu, T.C.;Zeng, L.;Din, T.;Chen, Y.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.63-66
    • /
    • 2003
  • It is experimentally shown that a $TiO_2$ film on Si(111) substrate was prepared by using the technique of D.C. reaction sputter deposition with $Ar^{+}$ ion beam bombardment, and a layer-like structure was observed from the depth profile of the interface between $TiO_2$ film and Si substrate with Scanning Electron Microscopy and Electron Probe. It was also surprisingly discovered that Ti atoms could be detected at about 9 $\mu$m depth. The $TiO_2$-Si interface bombarded by $Ar^{+}$ ion beams revealed multi-layer structures, a mechanism might be caused by defect diffusion, impurity and matrix relocation. Multi-relocations of impurity and matrix atoms were as a result of profile broadening of the $TiO_2$-Si interface, and the spread due to matrix relocation in this system is shown to exceed much more the spread due to impurity relocation.

Transmission Electron Microscopy Specimen Preparation for Two Dimensional Material Using Electron Beam Induced Deposition of a Protective Layer in the Focused Ion Beam Method

  • An, Byeong-Seon;Shin, Yeon Ju;Ju, Jae-Seon;Yang, Cheol-Woong
    • Applied Microscopy
    • /
    • v.48 no.4
    • /
    • pp.122-125
    • /
    • 2018
  • The focused ion beam (FIB) method is widely used to prepare specimens for observation by transmission electron microscopy (TEM), which offers a wide variety of imaging and analytical techniques. TEM has played a significant role in material investigation. However, the FIB method induces amorphization due to bombardment with the high-energy gallium ($Ga^+$) ion beam. To solve this problem, electron beam induced deposition (EBID) is used to form a protective layer to prevent damage to the specimen surface. In this study, we introduce an optimized TEM specimen preparation procedure by comparing the EBID of carbon and tungsten as protective layers in FIB. The selection of appropriate EBID conditions for preparing specimens for TEM analysis is described in detail.

Study of the Structure Change on Ion-Beam-Mixed CoPt Alloys.

  • Son, J.H.;Lee, Y.S.;Lim, K.Y.;Kim, T.G.;Chang, G.S.;Woo, J.J.;Whang, C.N.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.135-136
    • /
    • 1998
  • By the ion bombardment the original discrete layered structure is damaged and a uniformly mixed layer is formed by the intermixing of the films. Immediately after this dynamic cascade mixing a structure of this mixed layer is likely to be a mixture of randomly distributed atoms. Subsequently the mixed layered structure becomes a non-equilibrium structure such as the metastable pphase because the kinetic energies of the incident ions rappidly dissippate and host atoms within the collision cascade region are quenched from a highly energetic state. The formation of the metastable transition metal alloys using ion-beam-mixing has been extensively studied for many years because of their sppecific ppropperties that differ from those of bulk materials. in ion-beam-mixing the alloy or comppound is formed due to the atomic interaction between different sppecies during ion bombardment. in this study the metastable pphase formed by ion-beam-mixing pprocess is comppared with equilibrium one by arc-melting method by GXRD and XAS. Therfore we studied the fundamental characteristics of charge redistribution uppon alloying and formation of intermetallic comppounds. The multi-layer films were depposited on a wet-oxidized Si(100) substrate by sequential electron beam evapporation at a ppressure of less than 5$\times$10-7 Torr during depposition. These compprise 4 ppairs of Co and ppt layers where thicknesses of each layer were varied in order to change the alloy compposition.

  • PDF

Investigation of Liquid Crystal Alignment on ion beam exposed polystyrene surface (이온빔을 조사한 폴리스타일렌 기판에서의 액정의 배향특성)

  • Hwang, Hyun Suk;Lee, Jong-Deok;Rho, Jungkyu;Han, Jeong-Min
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.1
    • /
    • pp.33-37
    • /
    • 2014
  • This paper introduces homogeneous liquid crystal (LC) orientations on chemically modulated polystyrene (PS) surfaces using various ion beam (IB) exposure time. Transparent PS was replaced with conventional polyimide material. As a non-contact process, IB bombardment process induced LC orientation in the direction parallel to the IB process. Through x-ray photoelectron spectroscopy, it was shown that the chemical compositional changes of the IB-irradiated PS surfaces were determined as a function of IB exposure time.Using this analysis, the optimal IB bombardment condition was determined at IB exposure time of up to 15 s. Moreover, thermal stability on IB-irradiated PS surfaces were carried out which showed that a relatively high IB exposure time induced a thermally stable LC alignment property.

Electrical characteristic and surface morphology of IBE-etched Silicon (이온빔 에칭된 실리콘의 전기적 특성 및 표면 morphology)

  • 지희환;최정수;김도우;구경완;왕진석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.279-282
    • /
    • 2001
  • The IBE(ion beam etching)-induced Schottky barrier variation which depends on various etching history related with ion energy, incident angle and etching time has been investigated using voltage-current, capacitance-voltage characteristics of metal-etched silicon contact and morphology of etched surface were studied using AFM(atomic force microscope). For ion beam etched n-type silicons, Schottky barrier is reduced according to ion beam energy. It can be seen that amount of donor-like positive charge created in the damaged layer is proportional to the ion energy. By contrary, for ion beam etched p-type silicons, the Schottky barrier and specific contact resistance are both increased. Not only etching time but also incident angle of ion beam has an effect on barrier height. Taping-mode AFM analysis shows increased roughness RMS(Root-Mean-Square) and depth distribution due to ion bombardment. Annealing in an N$_2$ ambient for 30 min was found to be effective in improving the diode characteristics of the etched samples and minimum annealing temperatures to recover IBE-induced barrier variation were related to ion beam energy.

  • PDF

Full 3D Level Set Simulation of Nanodot Fabrication using FIBs

  • Kim, Heung-Bae
    • Applied Science and Convergence Technology
    • /
    • v.25 no.5
    • /
    • pp.98-102
    • /
    • 2016
  • The level set method has recently become popular in the simulation of semiconductor processes such as etching, deposition and photolithography, as it is a highly robust and accurate computational technique for tracking moving interfaces. In this research, full three-dimensional level set simulation has been developed for the investigation of focused ion beam processing. Especially, focused ion beam induced nanodot formation was investigated with the consideration of three-dimensional distribution of redeposition particles which were obtained by Monte-Carlo simulation. Experimental validations were carried out with the nanodots that were fabricated using focused $Ga^+$ beams on Silicon substrate. Detailed description of level set simulation and characteristics of nanodot formation will be discussed in detail as well as surface propagation under focused ion beam bombardment.

Investigation of Some Hard Coatings Synthesized by Ion Beam Assisted Deposition

  • He, Jian-Li;Li, Wen-Zhi;He, Xial-Ming;Liu, Chang-Hong
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.163-169
    • /
    • 1995
  • Ion beam assisted deposition(IBAD) technique was used to synthesize hard coatings including diamond-like carbon(DLC), carbon nitride(CN) and metal-ceramic multilayered films. It was found that DLC films formed at low energy ion bombardment possess more $Sp^3$ bonds and much higher hardness. The films exhibited an excellent wear resistance. Nanometer multialyered Fe/TiC films was deposited by ion beam sputtering. The structure and properties were strongly dependent on the thickness of the individual layers and modulation wave length. It was disclosed that both hardness and toughness of the films could be enhanced by adjusting the deposition parameters. The CN films synthesized by IBAD method consisted of tiny crystallites dispersed in amorphous matrix, which were identified by electron diffraction pattern to be $\beta -C_3N_4$.

  • PDF

Organization of pentacene molecules using an ion-beam treatment for organic thin film transistors (OTFT 특성향상을 위한 이온빔 정렬처리 통한 펜타센 분자의 비등방 정렬)

  • Kim, Young;Kim, Byeong-Young;Kim, Dae-Hyun;Han, Jeong-Min;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.116-116
    • /
    • 2009
  • This paper focuses on improving organic thin film transistor (OTFT) characteristics by controlling the self-organization of pentacene molecules with an alignable high-dielectric-constant film. The process, based on the growth of pentacene film through high-vacuum sublimation, is a method of self-organization using ion-beam (IB) bombardment of the $HfO_2/Al_2O_3$ surface used as the gate dielectric layer. X-ray photoelectron spectroscopy indicates that the IB raises the rate of the structural anisotropy of the $HfO_2/Al_2O_3$ film, and X-ray diffraction patterns show the possibility of increasing the anisotropy to create the self-organization of pentacene molecules in the first polarized monolayer.

  • PDF