• Title/Summary/Keyword: $\mu$-synthesis control system

Search Result 60, Processing Time 0.024 seconds

A study on the speed control system of medium - small size diesel engine by $\mu$-synthesis ($\mu$-synthesis 기법에 의한 중.소형 디젤기관의 속도 제어계에 관한 연구)

  • 양주호;변정환;정병건
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.82-87
    • /
    • 1997
  • This paper presents a method about the modeling of the medium - small diesel engine for the speed control and designs the robust speed control system by the $\mu$-synthesis, which has good performance, in spite of the existence of model uncertainities and the external disturbance. We confirmed the validity of the proposed modeling method and the designed control system by $\mu$-synthesis through the experimental responses.

  • PDF

A study of design on model following ${\mu}-$synthesis controller for optimal fuel-injection (최적 연료주입 모델 추종형 ${\mu}-$합성 제어기의 설계에 관한 연구)

  • Hwang, Hyun-Joon;Kim, Dong-Wan;Jeong, Ho-Seong;Son, Mu-Hun;Kim, Yeung-Hun;Hwang, Gi-Hyun;Mun, Kyeong-Jun;Park, June-ho;Hwang, Chang-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.163-169
    • /
    • 1998
  • In this paper, we design an optimal model following ${\mu}-$synthesis control system for fuel-injection of diesel engine which has robust performance and satisfactory command tracking performance in spite of uncertainties of the system. To do this, we give gain and dynamics parameters to the weighting functions and apply genetic algorithm with reference model to the optimal determination of the weighting functions that are given by the D-K iteration method which can design ${\mu}-$synthesis controller in the state space. These weighting functions are optimized simultaneously in the search domain which guarantees the robust performance of the system. The ${\mu}-$synthesis control system for fuel-injection designed by the above method has not only the robust performance but also a better command tracking performance than those of the ${\mu}-$synthesis control system designed by trial-and-error method. The effectiveness of this ${\mu}-$synthesis control system for fuel-injection is verified by computer simulation.

  • PDF

A design on optimal PD control system that has the robust performance (강인한 성능을 가지는 최적 PD 제어 시스템 설계)

  • Kim, Dong-Wan;Hwang, Hyeon-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.656-666
    • /
    • 1999
  • In this paper, we design the optimal PD control system which has the robust performance. This PD control system is designed by applying genetic algorithm (GA) to the determination of proportional gain KP and derivative gain KD that are given by PD servo controller, to make the output of plant follow the output of reference model optimally. These proportional and derivatibe gains are simultaneously optimized in the search domain guaranteeing the robust performance of system. And, this PD control system is compared with $\mu$ -synthesis control system for the robust performance. The PD control system designed by the proposed method has not only the robust performance but also the better command tracking performance than that of the $\mu$ -synthesis control system. The effectiveness of this control system is verified by computer simulation.

  • PDF

Hybrid System Controlled by a $\mu-Synthesis$ Method for a Seismically Excited Cable-Stayed Bridge (지진하중을 받는 사장교를 위한 $\mu$-합성법을 이용한 복합시스템)

  • Park, Kyu-Sik;Jung, Hyung-Jo;Choi, Kang-Min;Lee, Jong-Heon;Lee, In-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.574-577
    • /
    • 2004
  • This paper presents a hybrid system combining lead rubber bearings and hydraulic actuators controlled by a $\mu-synthesis$ method for seismic response control of a cable-stayed bridge. A hybrid system could alleviate some of restrictions and limitations that exist when each system is acting alone because multiple control devices are operating. Therefore, the overall control performance of a hybrid system may be improved compared to each system, however the overall system robustness may be negatively impacted by active device in the hybrid system or active controller may cause instability due to small margins. Therefore, a $\mu-synthesis$ method that guarantees the robust performance is considered to enhance the possibility of real applications of the control system. The performances of the proposed control system are compared with those of passive, active, semiactive control systems and hybrid system controlled by a LQG algorithm. Furthermore, an extensive robust analysis with respect to stiffness and mass matrices perturbation and time delay of actuator is performed. Numerical simulation results show that the performances of the proposed control system are superior to those of passive system and slightly better than those of active and semiactive systems and two hybrid systems show similar control performances. Furthermore, the hybrid system controlled by a f-synthesis method shows the good robustness without loss of control performances. Therefore, the proposed control system could effectively be used to seismically excited cable-stayed bridge which contains many uncertainties.

  • PDF

Robust Control of Two Mass Spring System with Parameter Variations (매개변수 변동을 갖는 2관성 시스템의 강건제어)

  • 조도현;이종용;이상효
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.729-737
    • /
    • 1998
  • In this paper, using $\mu$ synthesis algorithm with structured uncertainty, we design controller and apply it for the Two-Inertia resonance(TMS: Two Mass Spring) system. The TMS system is one of the simplest models which generate a torsional vibration. In this system, it is required to design a controller achieving the control performance while suppressing the torsional vibration. Furthermore, when vibration frequency for the system is varying by reason of parameter variations, we should consider parameter variations in controller design. Then, we design two other controller schemes of the PI controller and the standard $H_{\infty}$ controller and compare these controllers with the controller designed by the $\mu$ synthesis robust control method by using simulations and experiments.

  • PDF

A Design on Model Following ${\mu}$-Synthesis Control System for Optimal Fuel-Injection of Diesel Engine Using Genetic Algorithms (유전 알고리즘을 이용한 디젤 엔진의 최적 연료주입 모델 추종형 ${\mu}$-합성 제어 시스템의 설계)

  • Kim, Dong-Wan;Hwang, Hyun-Joon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.587-589
    • /
    • 1997
  • In this paper we design the model following ${\mu}$-synthesis control system for optimal fuel-injection of diesel engine using genetic algorithms. To do this, we give gain and dynamics parameters to the weighting functions and apply genetic algorithms with reference model to the optimal determination of weighting functions that are given by D-K iteration method which can design ${\mu}$-synthesis controller in the state space. These weighting functions are optimized simultaneously in the search domain selected adequately. The effectiveness of this ${\mu}$-synthesis control system for fuel-injection is verified by computer simulation.

  • PDF

Robust Control of a Seeker Scan Loop System Using ${\mu}$-Systheis (${\mu}$-합성법을 이용한 탐색기 주사루프의 강인 제어)

  • Lee, Ho-Pyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.180-188
    • /
    • 1999
  • ${\mu}$-synthesis is applied to design a robust controller for a seeker scan loop system which has model uncertainty and is subject to a external disturbance due to abrupt missile maneuver. The issue of modelling a real-valued parametric uncertainty of a physical seeker scan loop system is discussed. The two-degree-of-frame control structure is employed to obtain better performance. It is shown that ${\mu}$-synthesis provides a superior framework for the robust control design of a seeker scan loop system which exhibits robust performance. The proposed robust control system satisfies design requirements, and especially shows good scanning performances for conical and rosette scan patterns despite parametric uncertainty in real system model.

  • PDF

Seismic Response Control of a Cable-Stayed Bridge using a $\mu$-Synthesis Method ($\mu$-합성법을 이용한 사장교의 지진응답 제어)

  • 박규식;정형조;윤우현;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.476-483
    • /
    • 2004
  • This paper presents a hybrid system combining lead rubber bearings and hydraulic actuators controlled by a μ-synthesis method for seismic response control of a cable-stayed bridge. A hybrid system could alleviate some of restrictions and limitations that exist when each system is acting alone because multiple control devices are operating. Therefore, the overall control performance of a hybrid system may be improved compared to each system, however the overall system robustness may be negatively impacted by active device in the hybrid system or active controller may cause instability due to small margins. Therefore, a f-synthesis method that guarantees the robust performance is considered to enhance the possibility of real applications of the control system. The control performances of the proposed control system are compared with those of passive, active, semiactive control systems and hybrid system controlled by LQG algorithm and an extensive robust analysis with respect to stiffness and mass matrices perturbation and time delay of actuator is performed. Numerical simulation results show that the control performance of the proposed control system is superior to that of the passive system and slightly better than that of the active and semiactive systems and two hybrid systems show similar control performances. Furthermore, the hybrid system controlled by a μ-synthesis method shows the good robustness without loss of control performances. Therefore, the proposed control system could effectively be used to seismically excited cable-stayed bridge which contains many uncertainties.

  • PDF

Robust Vibration Control for a Building with Parameter Uncertainty (파라미터 불확실성을 고려한 건물의 견실 진동 제어)

  • 최재원;김신종;이만형
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.575-583
    • /
    • 2000
  • In this paper, we design a vibration control system that includes a 3-D.O.F. mass-spring-damper structure for the analytical model of a building that is excited at the base of this structure by an external dynamic force, and one Active Mass Damper(AMD) on the top of this structure to generate control forces fro attenuation of the structural response. Two robust controllers based on $\mu$-synthesis and H$\infty$ optimal control are designed for the structural system to show that the performance of a control system can be degraded by some parameter uncertainties such as mass, stiffness coefficients, and/or damping coefficients. The performance of the two controllers are compared in terms of nominal performance, robust stability and robust performance by simulations.

  • PDF

Mixed $H_2/H_{$\infty}$ and $\mu$-synthesis Approach to the Coupled Three-Inertia Problem (혼합 $H_2/H_{$\infty}$$\mu$-설계이론을 이용한 3관성 문제의 해법)

  • Choe, Yeon-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.896-903
    • /
    • 2001
  • This study investigates the use of mixed $H_2/H_{$\infty}$ and $\mu$-synthesis to construct a robust controller for the benchmark problem. The model treated in the problem is a coupled three-inertial system that reflects the dynamics of mechanical vibrations. This kind of problem requires to be satisfied the robust performance (both in the time and frequency-domain specifications). We, first, adopt the mixed $H_2/H_{$\infty}$ theory to design a feedback controller K(s). Next, $\mu$-synthesis method is applied to the overall system to make use of structured parametric uncertainty. This process permits higher levels of controller authority and reduces the conservativeness of the controller. Finally, the feedforward controller is also used to improve the transient response of the output. We confirm that all design specifications except a complementary sensitivity condition can be achieved.

  • PDF