• Title/Summary/Keyword: $\gamma$-glutamylcysteine synthetase

Search Result 40, Processing Time 0.024 seconds

Studies on the Properties of E. coli ${\gamma}-Glutamylcysteine$ Synthetase in Relation to the Enzymatic Synthesis of Glutathione (글루타치온의 효소적 생합성에 관계되는 E.coli ${\gamma}-Glutamylcysteine$ Synthetase의 특성 연구)

  • Nam, Yong-Suk;Kwak, Joon-Hyeok;Lee, Se-Yong
    • Applied Biological Chemistry
    • /
    • v.40 no.6
    • /
    • pp.478-483
    • /
    • 1997
  • ${\gamma}-Glutamylcysteine$ synthetase was purified from E. coli K-12 strain and its properties related to the in vitro synthesis of glutathione by enzymatic method were investigated. The activity of purified ${\gamma}-glutamylcysteine$ synthetase was increased with increasing concentration of L-glutamate up to 60 mM, while it was decreased by about 50% and 40% under 60 mM of L-cysteine and 45 mM of glycine, respectively. The enzyme activity was reduced not only by ADP, one of the reaction products, but also by the reduced form of glutathione. Therefore, because the reduced glutathione as well as glycine which is the substrate for glutathione synthetase inhibit the activity of ${\gamma}-glutamylcysteine$ synthetase, it is recommended to design a bioreactor system with two separate reactions for glutathione synthesis : one with ${\gamma}-glutamylcysteine$ synthetase reaction and the other glutathione synthetase reaction. In addition since ADP, resulted from these reactions, reduces the activity of ${\gamma}-glutamylcysteine$ synthetase, it is necessary to introduce an ATP regeneration system for glutathione synthesis.

  • PDF

Effect of Amino Acid Substitutions of Escherichia Coli $\gamma$-Glutamylcysteine Synthetase (Escherichia coli $\gamma$-Glutamylcysteine Synthetase의 아미노산 치환 효과)

  • 남용석;김중수;곽준혁;박영인;이세영
    • Korean Journal of Microbiology
    • /
    • v.29 no.5
    • /
    • pp.278-283
    • /
    • 1991
  • Two amino acid residues ($Ala^{494}$ and $Ser^{495}$ of E. coli .gamma.-glutamylcysteine synthetase have been investigated whether they are the site of feedback inhibition by site specific mutagenesis. Single substitution of $serine^{495}$ (S495F), and double substitutions of alanine$^{494}$ and $serine^{495}$ (A494G-S495F) resulted in the inactivation of the .gamma.-glutamylcysteine synthetase activity. Substitution of $alanine^{494}$ with $glycine^{494}$ resulted in a higher level of feedback inhibition. These results suggest that $serine^{495}$ in .gamma.-glutamylcysteine synthetase is required for its catalytic acitvity and $alanine^{494}$ is presumably related to the feeback inhibition site.

  • PDF

Site-Specific Mutagenesis of the gshI Gene for Increasing the Activity of ${\gamma}$-Glutamylcysteine Synthetase in Escherichia coli K-12

  • Kwak, Joon-Hyeok;Nam, Yong-Suk;Lee, Se-Yong
    • BMB Reports
    • /
    • v.31 no.3
    • /
    • pp.254-257
    • /
    • 1998
  • The gshI gene from the Escherichia coli K-12 strain codes for ${\gamma}-glutamylcysteine$ synthetase which mediates the rate-limiting step of glutathione biosynthesis. The isolated gshI gene from E. coli K-12 has an unusual translation initiation codon, UUG. The 494th amino acid is Ala rather than Gly which was found in a mutant strain E. coli B. In order to improve the translational rate of the gshI gene of E. coli K-12, the initiation codon, UUG, was changed to the usual AUG codon by the site-specific mutagenesis. This change has resulted in a 53% increase of ${\gamma}-glutamylcysteine$ synthetase activity. The enzyme activity was also improved by replacing $Ala^{494}$ with Val (A494V) or Leu (A494L). The replacement of $Ser^{495}$ with Thr (S495T) also resulted in a 62% increase of the enzyme activity. Therefore, the specific activity of ${\gamma}-glutamylcysteine$ synthetase was increased with the increasing chain length of the aliphathic amino acid at the site of the 494th amino acid (Ala<$Val{\leq}Leu$).

  • PDF

Repression of γ-Glutamylcysteine Synthetase and Glutathione S-Transferases by Metformin, an Anti-diabetic Agent, in H4IIE Rat Hepatocytes

  • Bae, Eun-Ju;Cho, Min-Joo;Kim, Sang-Geon
    • Toxicological Research
    • /
    • v.23 no.2
    • /
    • pp.127-133
    • /
    • 2007
  • Metformin is a drug used to lower blood sugar levels in patients with type 2 diabetes via activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK). The primary objective of this study was to investigate whether metformin at the pharmacologically effective concentrations affects the expressions of ${\gamma}$-glutamylcysteine synthetase and phase II antioxidant genes in the H4IIE cell. Treatment of the cells with either metformin or 5-aminoimidazole-4-carboxamide riboside (AICAR) abrogated tert-butylhydroxyquinone (t-BHQ) induction of ${\gamma}$-glutamylcysteine synthetase, a rate limiting enzyme of GSH synthesis. The ability of t-BHQ to induce glutathione S-transferases (GSTs), a major class of phase II detoxifying enzymes that playa critical role in protecting cells from oxidative stress or electrophiles, was also inhibited by the agents. Transcriptional gene repression by metformin was verified by the GSTA2 promoter luciferase assay. Moreover, either metformin or AICAR treatment significantly decreased t-BHQ-dependent induction of other GSTs (i.e., $GST{\mu}$ and $GST{\pi}$ forms). Taken together, our data indicate that metformin treatment may result in the repression of ${\gamma}$-glutamylcysteine synthetase and glutathione S-transferase genes possibly via AMPK activation.

The Changes of Antioxidant Enzymes in the Lung of Alloxan-induced Diabetic Rats (알록산 유도 당뇨흰쥐의 폐에서 황산화계의 변화)

  • 최형호;고광삼;임동윤
    • YAKHAK HOEJI
    • /
    • v.39 no.6
    • /
    • pp.654-660
    • /
    • 1995
  • The present study was attempted to investigate the mechanism of oxidative cellular injuries which occur in diabetic rats by determining changes of antioxidant enzymes activity in the lung of alloxan-induced diabetic rats, the contents of glutathione in the lung, liver, blood samples, and ${\gamma}$-glutamylcysteine synthetase activities in the liver. Superoxide dismutase activities (SOD), including Cu, Zn-SOD and Mn-SOD, decreased in the lung of diabetic rats compared with those of normal control rats. However, activities of catalase and glutathione peroxidase(GPX) activities were not affected in the lung of diabetic rats. In diabetic rats, glutathione contents in the lung, liver, and blood samples, as well as the activities of ${\gamma}$-glutamylcysteine synthetase in the livers which is known to be the key enzyme of glutatione biosynthesis, decreased significantly. From these experimental results, it is thought that the decrease in SOD activities in the lung, glutathione contents and ${\gamma}$-glutamylcysteine synthetase activities in some tissues in alloxan-induced diabetic rats may be the crucial cause of vullnerability to oxidative cellular injuries.

  • PDF

글루타치온 생산효소( $\gamma$-Glutamylcysteine Synthetase)와 그 변이효소의 구조분석 및 반응 Kinetics 연구

  • Yang, Hye-Jeong;Gwon, Dae-Yeong
    • Bulletin of Food Technology
    • /
    • v.17 no.4
    • /
    • pp.98-106
    • /
    • 2004
  • Two mutant enzymes of $\gamma$-glutamylcysteine synthetase ($\gamma$-GCS) which catalyzed the synthesis of $\gamma$-glutamylcysteine from L-glutamic acid and L-cysteine in the presence of ATP, were prepared bypoint mutation of $\gamma$-GCS gene with site-directed mutagensis in E. coli. Conformational structuresand catalytic reaction kinetics of mutant enzymes were compared with wild type $\gamma$-GCS afterpurification. The S495F mutant enzyme (serine at 495 residue was substituted with phenylalanine),which had no catalytic activity for $\gamma$-glutamylcysteine synthesis, rarely folded even in neutral pH.However, the mutant A494V (alanine of 494 residue was replaced by valnine) which showed 50 %increase of activity, had a high folding structure. The folding structure of A494V also more stable athigh temperature and extreme pH compared to wild type and S495F. Reaction kinetics of wild typeand A494V were also investigated, Km value of A494V was smaller than that of wild type, while itshowed a little difference at Vmax values. This result evolved that alanine at 494 may be involved inbinding site of substrate rather than catalytic site. In addition, change of catalytic activity by onepoint mutation was highly correlated with the folding structure of enzyme.

  • PDF

Glutathione Content and the Activities of Glutathione-Synthesizing Enzymes in Fission Yeast are Modulated by Oxidative Stress

  • Lee, Yuk-Young;Kim, Su-Jung;Park, Eun-Hee;Lim, Chang-Jin
    • Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.248-251
    • /
    • 2003
  • Glutathione (GSH) is an important factor in determining tolerance against oxidative stress in living organisms. It is synthesized in two sequential reactions catalyzed by ${\gamma}$-glutamylcysteine synthetase (GCS) and glutathione synthetase (GS) in the presence of ATP. In this work, the effects of three different oxidative stresses were examined on GSH content and GSH-related enzyme activities in the fission yeast Schizosaccharomyces pombe. GSH content in S. pombe was significantly enhanced by treatment with hydrogen peroxide, ${\beta}$-naphthoflavone (BNF) and tert-butylhydroquinone (BHQ). Simultaneously, they greatly induced GCS and GS activity. However, they did not have any effects on glutathione reductase activity. These results suggest that GCS and GS activities in S. pombe are up-regulated by oxidative stress.

Establishment of New Method for the Assay of Glutamate-cysteine Ligase Activity in Crude Liver Extracts

  • Kwon Young-Hye;Stipanuk Martha H.
    • Toxicological Research
    • /
    • v.22 no.1
    • /
    • pp.39-45
    • /
    • 2006
  • As the antioxidant and free radical scavenger, glutathione (GSH) participates in the preservation of cellular redox status and defense against reactive oxygen species and xenobiotics. Glutamate-cysteine ligase (GCL; also known as ${\gamma}$-glutamylcysteine synthetase, EC 6.3.2.2) is the rate limiting enzyme in GSH synthesis. In the present study, the accurate method for determination of GCL activity in crude liver extracts was developed by measuring both ${\gamma}$-glutamylcysteine and GSH from cysteine in the presence of glutamate, glycine and an ATP-generating system. We added glycine to promote the conversion of ${\gamma}$-glutamylcysteine to GSH, and to minimize the possibility of ${\gamma}$-glutamylcysteine metabolism to cysteine and oxoproline by ${\gamma}$-glutamylcyclotransferase. We established optimal conditions and substrate concentrations for the enzyme assay, and verified that inhibition of GCL by GSH did not interfere with this assay. Therefore, this assay of hepatic GCL under optimal conditions could provide a more accurate measurement of this enzyme activity in the crude liver extracts.

Production of ${\gamma}$-Glutamylcysteine by Immobilized Mixed Microbial System of Recombinant E. coli and Yeast (재조합 대장균과 효모의 고정화 혼합세포계에 의한 ${\gamma}$-Glutamylcysteine 생산)

  • 김원근;구윤모
    • KSBB Journal
    • /
    • v.10 no.3
    • /
    • pp.249-256
    • /
    • 1995
  • ${\gamma}$-Glutamylcysteine production by the immobilized microbial system of recombinant Escherichia coli and yeast was investigated. ${\gamma}$-Glutamylcysteine was synthesized from L-glutamic acid and L-cysteine in the presence of ATP by the reaction catalyzed by ${\gamma}$-glutamylcysteine synthetase. An immobilized microbial cell system was developed for the efficient ${\gamma}$-glutamylcysteine production. Recombinant Escherichia coli and yeast were immobilized by alginate. Production of ${\gamma}$-glutamylcysteine was better with the recombinant Escherichia coli for both the synthesis of ${\gamma}$-glutamylcysteine and the ATP regeneration than the mixed system of recombinant Escherichia coli and yeast. The proper radio of recombinant Escherichia coli to yeast was experimentary observed to be 1:4 in the mixed system. Although the immobi1ized system had the slower reaction rate, its reaction stability was increased by 10%.

  • PDF