• Title/Summary/Keyword: $\beta$-receptor

Search Result 1,097, Processing Time 0.033 seconds

Studies on the Adrenergic Alpha-Receptor in the Guinea Pig Ileum (해명 회장 운동에 대한 아드레나린성 ${\alpha}$-수용체에 관한 연구)

  • Ko, Chang-Mann
    • The Korean Journal of Pharmacology
    • /
    • v.19 no.1
    • /
    • pp.85-92
    • /
    • 1983
  • Intestine is innervated by an interconnected plexus of both sympathetic and parasympathetic nerve fibers. Sympathetic influence causes inhibition of intestinal motility mediated by both ${\alpha}-\;and\;{\beta}-adrenergic$ receptors. The mechanism of intestinal relaxation by ${\beta}-receptors$ has been extensively studied, but the function of ${\alpha}-receptors$ in intestinal motility is still unclear. Although it is suggested that catecholamine reduces acetylcholine release and this may play an important role in ${\alpha}-receptor$ mediated intestinal relaxation, there is no definite evidences about the mechanism and site of action of ${\alpha}-receptor$ mediated relaxation. In this experiment, therefore, the effect and site of action of ${\alpha}-receptor$ agonists were investigated in the guinea pig ileum using electrical field stimulation. The results are summarized as follows : 1) Electrical field stimulation elicited tonic contraction in isolated guinea pig ileum ana this contraction was completely inhibited by the pretreatment of tetrodotoxin or atropine. 2) Norepinephrine, epinephrine and dopamine inhibited the contraction induced by electrical field stimulation but methoxamine and phenylephrine had little effects. 3) Inhibitory effects of norepinephrine and dopamine was partially blocked by yohimbine and phentolamine pretreatment. But haloperidol and propranolol pretreatment cause no effects on the electrical field stimulation induced contraction. Inhibitory effect of dopamine was completely blocked by both haloperidol and yohimbine pretreatment. 4) Inhibitory effects of norepinephrine and dopamine were little affected by the pretreatment with hexamethonium. It is suggested that electrical field stimulation causes tonic contraction of guinea pig ileum by releasing acetylcholine from postganglionic fiber, and this release is blocked by presynaptic ${\alpha}-receptor$ activation.

  • PDF

Sex hormones alter the response of Toll-like receptor 3 to its specific ligand in fallopian tube epithelial cells

  • Zandieh, Zahra;Amjadi, Fatemehsadat;Vakilian, Haghighat;Aflatoonian, Khashayar;Amirchaghmaghi, Elham;Fazeli, Alireza;Aflatoonian, Reza
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.45 no.4
    • /
    • pp.154-162
    • /
    • 2018
  • Objective: The fallopian tubes play a critical role in the early events of fertilization. The rapid innate immune defense is an important part of the fallopian tubes. Toll-like receptor 3 (TLR3), as a part of the innate immune system, plays an important role in detecting viral infections. In this basic and experimental study, the effect of sex hormones on the function of TLR3 in the OE-E6/E7 cell line was investigated. Methods: The functionality of TLR3 in this cell line was evaluated by cytokine measurements (interleukin [IL]-6 and IL-1b) and the effects of sex hormones on TLR3 were tested by an enzyme-linked immunosorbent assay kit. Additionally, TLR3 small interfering RNA (siRNA) and a TLR3 function-blocking antibody were used to confirm our findings. Results: The production of IL-6 significantly increased in the presence of polyinosinic-polycytidylic acid (poly(I:C)) as the TLR3 ligand. Using a TLR3-siRNA-ransfected OE-E6/E7 cell line and function-blocking antibody confirmed that cytokine production was due to TLR3. In addition, 17-${\beta}$ estradiol and progesterone suppressed the production of IL-6 in the presence and absence of poly(I:C). Conclusion: These results imply that sex hormones exerted a suppressive effect on the function of TLR3 in the fallopian tube cell line when different concentrations of sex hormones were present. The current results also suggest that estrogen receptor beta and nuclear progesterone receptor B are likely to mediate the hormonal regulation of TLR3, as these two receptors are the main estrogen and progesterone receptors in OEE6/E7 cell line.

Progesterone Inhibits Luteinizins Hormone $\beta$ Subunit (LHP) Gene Expression in the Rat Pituitary in a Svnergic Manner (프로제스테론은 흰쥐 뇌하수체에서 LH$\beta$유전 발현을 에스트로젠과 상승작용으로 억제한다.)

  • 조병남;성재영
    • The Korean Journal of Zoology
    • /
    • v.37 no.3
    • /
    • pp.377-384
    • /
    • 1994
  • The present study examines the inhibitow effect of progesterone (P) on luteinizing hormone $(LH)\beta$ subunit gene expression in anterior pituitary of ovariectomized, estradiol-treated adult rats. A single injection of P (1mg) further decreased the estradiol-Induced decrease in $LH\beta$ mRNA levels in ovariectomTzed rats in a time-dependent manner. p suppressed UIP mRNA levels at lower doses (0.1 and 1mg), but increased $LH\beta$ mRNA levels 81 a high dose (toms). The inhibitor action of P on $Uf\beta$ mRNA was restored when Ru486, a P receptor antagonist, was administered 1h before P treatment. These data clearly indicate that P inhibits gene expression of $LH\beta$ in the rift pituitary in a swersic manner with estrogen.

  • PDF

Molecular Cloning of Estrogen Receptor $\alpha$ in the Masu Salmon, Oncorhynchus masou

  • Sohn, Young Chang
    • Journal of Aquaculture
    • /
    • v.17 no.1
    • /
    • pp.62-68
    • /
    • 2004
  • A cDNA encoding the masu salmon, Oncorhynchus masou, estrogen receptor $\alpha$ (msER$\alpha$) was cloned from the pituitary gland by polymerase chain reaction (PCR). This cDNA contains an open reading frame encoding 513 amino acid residues, and the calculated molecular weight of this protein is about 56,430 Dalton. The amino acid sequences of the DNA binding and ligand binding domains of msER$\alpha$ showed high homology to those of other fish species (84-100%). Reverse transcription PCR analysis showed that the mRNA level of msER$\alpha$ in the pituitary was slightly higher in estradiol-17$\beta$(E2) injected masu salmon than that of control fish. To test the biological activity of msER$\alpha$, the cDNA was ligated to a mammalian expression vector and transfected into a gonadotrope-derived cell line, L$\beta$T2, with a reporter plasmid including estrogen responsive element. Expression of the reporter protein, luciferase, was E2 and msER$\alpha$-dependent. The masu salmon ER$\alpha$ is structurally conserved among teleost species and functions as a transcriptional activator in the pituitary cells.

Inhibitory Effect of an Urotensin II Receptor Antagonist on Proinflammatory Activation Induced by Urotensin II in Human Vascular Endothelial Cells

  • Park, Sung Lyea;Lee, Bo Kyung;Kim, Young-Ae;Lee, Byung Ho;Jung, Yi-Sook
    • Biomolecules & Therapeutics
    • /
    • v.21 no.4
    • /
    • pp.277-283
    • /
    • 2013
  • In this study, we investigated the effects of a selective urotensin II (UII) receptor antagonist, SB-657510, on the inflmmatory response induced by UII in human umbilical vein endothelial cells (EA.hy926) and human monocytes (U937). UII induced inflammatory activation of endothelial cells through expression of proinflammatory cytokines (IL-$1{\beta}$ and IL-6), adhesion molecules (VCAM-1), and tissue factor (TF), which facilitates the adhesion of monocytes to EA.hy926 cells. Treatment with SB-657510 significantly inhibited UII-induced expression of IL-$1{\beta}$, IL-6, and VCAM-1 in EA.hy926 cells. Further, SB-657510 dramatically blocked the UII-induced increase in adhesion between U937 and EA.hy926 cells. In addition, SB-657510 remarkably reduced UII-induced expression of TF in EA.hy926 cells. Taken together, our results demonstrate that the UII antagonist SB-657510 decreases the progression of inflammation induced by UII in endothelial cells.

MITOGENIC EFFECTS OF NICOTINE TO HUMAN PERIODONTAL LIGAMENT(PDL) CELLS IN VITRO (In Vitro에서 니코틴이 치주인대세포에 미치는 세포분열효과에 대한 연구)

  • Row, Joon;Chun, Youn-Sic
    • The korean journal of orthodontics
    • /
    • v.27 no.6 s.65
    • /
    • pp.955-961
    • /
    • 1997
  • Nicotine is one of the major components of cigarette smoking which causes various systemic and local diseases to human body. Mitogenic effects of nicotine to systemic disease are interesting factors in the results of cellular Proliferation especially to vascular and pulmonary tissue or cells. The study of local effects concerns with destruction of tissue and delayed healing rate after various surgical treatment. Platelet-Derived Growth factor(PDGF) and Insulin-like growth factor(IGF) are blown as major mitogens to human PDL cells. The purpose of this study was to investgate the mitogenic effects of nicotine to human PDL cells. We studied the expression of PDGF-$\alpha$ receptor, PDGF-$\beta$receptor, and IGF-l receptor mRNA from the nicotine treated human PDL cells by northern analysis. The experimental groups were divided into different serum($1\%,\;10\%$) and nicotine (100ng/m1,1000ng/m1) concentrations and each group was studied by time course. The results of this study showed upregulation of PDGF-${\alpha},\;{\beta}$ receptor and IGF-l receptor mRNA at 100ng/ml nicotine concentration and $10\%$ serum group to the time course. These results suggest that physiologically attainable nicotine concentrations may stimulate the mitogenic gene synthesis to human PDL cells in vitro.

  • PDF

Effects of Exogenous Oxytocin on Steroid Hormones and Oxytocin Receptor Concentrations in Pregnant Rats (Oxytocin 투여가 임신 Rat의 Steroid Hormones 및 Oxytocin Receptors 농도에 미치는 영향)

  • 박용수;조현수;변명대
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.2
    • /
    • pp.183-192
    • /
    • 2002
  • The present studies were carried out to examine the effects of exogenous oxytocin(OT) on plasma, uterine and placenta of estradiol-17$\beta$, progesterone, prostaglandin F$_2$$_{\alpha}$ (PGF$_2$$_{\alpha}$), Prostaglandin E$_2$(PGE$_2$) and OT receptor concentrations in pregnant rats. Pregnant rats received an injection of exogenous OT on days 14, 16, 18, 20, 22 of pregnancy and day 1 of postpartum. Concentrations of plasma estradiol-17 $\beta$ after OT injection started to increase after day 18 and peaked on day 22 of pregnancy but decreased on day 1 of postpartum. Plasma progesterone concentrations declined gradually from day 18 of pregnancy and decreased more rapidly until postpartum 1 day. Concentrations of estradiol-17$\beta$in uterine tissues after OT injection were sharply increased from day 20 to 22 of pregnancy and progestrone concentrations were peaked on day 16 and decreased rapidly from day 16 to 20 and maintained the same level until day 1 of postpartum. Uterine concentrations of PGF$_2$$_{\alpha}$ and PGE$_2$increased gradually until day 20 and peaked on day 22 of pregnancy but showed a marked decrease on day 1 of postpartum. Concentrations of PGF$_2$$_{\alpha}$ in placental tissues increased rapidly from day 14 of pregnancy and decreased sharply on day 1 of postpartum. Concentrations of PGE$_2$increased gradually after day 14 and peaked on day 20 of pregnancy. The concentration of OT receptor in uterus was significantly elevated from day 20 and rose to maximum on day 22 of pregnancy. These findings show that OT suppress the concentration of progestrone and stimulate productions of estradiol-17 $\beta$, PGF$_2$$_{\alpha}$, PGE$_2$ and oxytocin receptor concentrations in pregnant rats.

Insulin Receptor Substrate Proteins and Diabetes

  • Lee Yong Hee;White Morris F.
    • Archives of Pharmacal Research
    • /
    • v.27 no.4
    • /
    • pp.361-370
    • /
    • 2004
  • The discovery of insulin receptor substrate (IRS) proteins and their role to link cell surface receptors to the intracellular signaling cascades is a key step to understanding insulin and insulin-like growth factor (IGF) action. Moreover, IRS-proteins coordinate signals from the insulin and IGF receptor tyrosine kinases with those generated by proinflammatory cytokines and nutrients. The IRS2-branch of the insulin/IGF signaling cascade has an important role in both peripheral insulin response and pancreatic $\beta$-cell growth and function. Dysregulation of IRS2 signaling in mice causes the failure of compensatory hyperinsulinemia during peripheral insulin resistance. IRS protein signaling is down regulated by serine phosphorylation or protea-some-mediated degradation, which might be an important mechanism of insulin resistance during acute injury and infection, or chronic stress associated with aging or obesity. Under-standing the regulation and signaling by IRS1 and IRS2 in cell growth, metabolism and survival will reveal new strategies to prevent or cure diabetes and other metabolic diseases.

Synthesis and Binding Affinity of Homologated Adenosine Analogues as A3 Adenosine Receptor Ligands

  • Lee, Hyuk-Woo;Choi, Won-Jun;Jacobson, Kenneth A.;Jeong, Lak-Shin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1620-1624
    • /
    • 2011
  • Homologated analogues 3a and 3b of potent and selective A3 adenosine receptor ligands, IB-MECA and dimethyl-IB-MECA were synthesized from commercially available 1-O-acetyl-2,3,5-tri-O-benzoyl-${\beta}$-D-ribofuranose (4) via $Co_2(CO)_8$-catalyzed siloxymethylation as a key step. Unfortunately, homologated analogues 3a and 3b did not show significant binding affinities at three subtypes of adenosine receptors, indicating that free rotation, resulting from homologation, induced unfavorable interactions in the binding site of the receptor maybe due to the presence of many conformations.

System-Wide Expression and Function of Olfactory Receptors in Mammals

  • Oh, S. June
    • Genomics & Informatics
    • /
    • v.16 no.1
    • /
    • pp.2-9
    • /
    • 2018
  • Olfactory receptors (ORs) in mammals are generally considered to function as chemosensors in the olfactory organs of animals. They are membrane proteins that traverse the cytoplasmic membrane seven times and work generally by coupling to heterotrimeric G protein. The OR is a G protein-coupled receptor that binds the guanine nucleotide-binding $G{\alpha}_{olf}$ subunit and the $G{\beta}{\gamma}$ dimer to recognize a wide spectrum of organic compounds in accordance with its cognate ligand. Mammalian ORs were originally identified from the olfactory epithelium of rat. However, it has been recently reported that the expression of ORs is not limited to the olfactory organ. In recent decades, they have been found to be expressed in diverse organs or tissues and even tumors in mammals. In this review, the expression and expected function of olfactory receptors that exist throughout an organism's system are discussed.