• Title/Summary/Keyword: $\beta$-glucosidase inhibitor

Search Result 18, Processing Time 0.016 seconds

Purification and Characterization of Beta-Glucosidase from Weissella cibaria 37

  • Lee, Kang Wook;Han, Nam Soo;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1705-1713
    • /
    • 2012
  • A gene encoding ${\beta}$-glucosidase was cloned from Weissella cibaria 37, an isolate from human feces. Sequence analysis showed that the gene could encode a protein of 415 amino acids in length, and the translated amino acid sequence showed homology (34-31%) with glycosyl hydrolase family 1 ${\beta}$-glucosidases. The gene was overexpressed in E. coli BL21(DE3) using pET26b(+) and a 50 kDa protein was overproduced, which matched well with the calculated size of the enzyme, 49,950.87 Da. Recombinant ${\beta}$-glucosidase was purified by using a his-tag affinity column. The purified ${\beta}$-glucosidase had an optimum pH and a temperature of 5.5 and $45^{\circ}C$, respectively. Among the metal ions (5mM concentration), $Ca^{2+}$ slightly increased the activity (108.2%) whereas $Cu^{2+}$ (46.1%) and $Zn^{2+}$ (56.7%) reduced the activity. Among the enzyme inhibitors (1 mM concentration), SDS was the strongest inhibitor (16.9%), followed by pepstatin A (45.2%). The $K_m$ and $V_{max}$ values of purified enzyme were 4.04 mM and 0.92 ${\mu}mol/min$, respectively, when assayed using pNPG (p-nitrophenyl-${\beta}$-D-glucopyranoside) as the substrate. The enzyme liberated reducing sugars from carboxymethyl cellulose (CMC).

Purification and Characterization of High-Molecular-Weight $\beta$-Glucosidase from Trichoderma koningii (Trichoderma koningii가 생성하는 고분자량 $\beta$-glucosidase의 정제 및 특성)

  • 맹필재;정춘수;하영칠;홍순우
    • Korean Journal of Microbiology
    • /
    • v.24 no.3
    • /
    • pp.251-262
    • /
    • 1986
  • High-molecular-weight ${\beta}-glucosidase$ (EC 3.2.1.21) was purified from the culture filtrate of Trichoderma koningii through a four-step procedure including chromatography on Bio-Gel P-150, DEAE-Sephadex A-50 and SP-Sephadex C-50; and chromatofocusing on Polybuffer exchanger PBE 94. The molecular weight of the enzyme was determined to be about 101,000 by SDS-polyacrylamide gel electrophoreses, and the isoelectric point was estimated to be 4.96 by analytical isoelectric focusing. The temperature optimum for activity was about $55^{\circ}C$, and the pH optimumwas 3.5. The enzyme was considerably thermostable, for no loss of activity was observed when the enzyme was preincubated at $60^{\circ}C$ for 5h. Km values for cellobiose, gentiobiose, sophorose, salicin and $p-nitrophenyl-{\betha}-D-glucoside$ were 99.2, 14.7, 7.09, 3.15 and 0.70 mM, respectively, which indicates that the enzyme has much higher affinity towards $p-nitrophenyl-{\betha}-D-glucoside$ than towards the other substrates, especially cellobiose. Substrate inhibition by $p-nitrophenyl-{\betha}-D-glucoside$ and salicin was observed at the conecntrations exceeding 5mM. Gluconolactone was a powerful inhibitor against the action of the enzyme on $p-nitrophenyl-{\betha}-D-glucoside\;(K_i\;37.9\;{\mu}M)$, wherease glucose was much less effective ($K_i$ 1.95 mM). Inhibition was of the competitive type in each case. Transglucosylation activity was detected shen the readtion products formed from $p-nitrophenyl-{\betha}-D-glucoside$ by the enzyme were analysed using high-performance liquid chromatography.

  • PDF

Mode of Action of Water Soluble β-Glucan from Oat (Avena sativa) on Calorie Restriction Effect In-Vitro and In-Vivo Animal Models (In-Vitro, In-Vivo 동물모델에서 귀리 유래 수용성 베타-글루칸의 칼로리 제한 효과 작용기전 규명)

  • Kang, Hanna;Kim, Se-Chan;Kang, Yong Soo;Kwon, Young-In
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.6
    • /
    • pp.1222-1228
    • /
    • 2017
  • In the current study, we investigated the inhibitory activity of water soluble ${\beta}-glucan$ from oat (Avena sativa) against various digestive enzymes such as ${\alpha}-glucosidase$, sucrase, maltase and glucoamylase. Inhibition of these enzymes involved in the absorption of disaccharide can significantly decrease the post-prandial increase of blood glucose level after a mixed carbohydrate diet. The ${\beta}-glucan$ had the highest documented rate of small intestinal sucrase inhibitory activity (2.83 mg/mL, $IC_{50}$) relevant for potentially managing post-prandial hyperglycemia. Furthermore, we evaluated the effects of ${\beta}-glucan$ on the level of post-prandial blood glucose in animal model. The post-prandial blood glucose levels were tested two hours after sucrose/starch administration, with and without ${\beta}-glucan$ (100, and 500 mg/kg-body weight). The maximum blood glucose levels (Cmax) of ${\beta}-glucan$ administration group were decreased by about 23% (from $219.06{\pm}27.82$ to $190.44{\pm}13.18$, p<0.05) and 10% (from $182.44{\pm}13.77$ to $165.64{\pm}10.59$, p<0.01) in starch and sucrose loading test, respectively, when compared to control in pharmacodynamics study. The ${\beta}-Glucan$ administration significantly lowered the mean, maximum, and minimum level of post-prandial blood glucose at 30 min after meal. In view of the foregoing, it is felt that our findings suggest that ${\beta}-glucan$ from oat serves to reduce post-prandial blood glucose rise secondary to slower absorption of glucose in the small intestine, via carbohydrate hydrolyzing enzymes inhibition.

Antidiabetic Activity and Enzymatic Activity of Commercial Doenjang Certified for Traditional Foods (전통식품 품질인증 일부 시판 된장의 효소활성 및 항당뇨 활성)

  • Lee, So-Young;Kim, In-Sun;Park, So-Lim;Lim, Seong-Il;Choi, Hye-Sun;Choi, Shin-Yang
    • KSBB Journal
    • /
    • v.27 no.6
    • /
    • pp.361-366
    • /
    • 2012
  • We investigated the anti-diabetic activity and enzymatic activity of 24 commercial doenjang samples certified for traditional foods. Twenty four doenjang samples showed the wide ranges in enzymatic activities (protease activities 0-50.45 unit/g, ${\alpha}$-amylase activities 0-675.9 unit/g, ${\beta}$-amylase 13.6-308.6 unit/g), and there were no difference in enzymatic activity by the producing region. To evaluate the potential anti-diabetic activity of 24 doenjang samples, we examined the effect of doenjang methanol extract (DME) on 2-[n-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amyno]-2-deoxy-d-glucose (2-NBDG) uptake. Ten samples among 24 samples significantly stimulated the uptake of 2-NBDG. When the cells were treated with DME at 400 ug/mL, No. 17 and 23 specially stimulated 2-NBDG uptake by 1.23-fold and 1.25-fold, respectively, compared with untreated control cell. And there were no cytotoxicity in the C2C12 cells treated with DME at concentration of 500 ug/mL. Among 24 samples, No. 6, 7, 12, 21 and 24 showed the ${\alpha}$-glucosidase inhibitor activity at concentration of 10 mg/mL; however, they were less effective than acarbose which is a commercial ${\alpha}$-glucosidase inhibitor.

Studies on Screening and Iolation of ${\alpha}-Amylase$ Inhibitors of Soil Microorganisms( II ) -Isolation and Activities of the Inhibitor of Streptomyces Strain DMC-72- (토양균의 ${\alpha}-Amylase$ 저해제 검색 및 분리에 관한 연주(제2보) -스트렙토마이세스속 DMC-72 균주의 저해 성분의 분리 및 작용-)

  • Kim, Kyung-Jae;Lee, Shung-Hee;Kim, Jung-Woo;Kim, Ha-Won;Shim, Mi-Ja;Choi, Eung-Chil;Kim, Byong-Kak
    • The Korean Journal of Mycology
    • /
    • v.13 no.4
    • /
    • pp.203-212
    • /
    • 1985
  • Of 450 strains isolated from the soil microbes collected in various locations in Korea, a strain had a strong inhibitory activity against bacterial ${\alpha}-amylase$ and was named strain DMC-72 of the genus Streptomyces. The amylase inhibitory metabolite produced by this strain was purified by means of acetone precipitation, adsorption on Amberlite IRC-50 and SP-Sephadex C-25. The inhibitor was found to be a derivative of oligosaccharides by spectral and chemical data. The inhibitor was stable at the pH range of $1{\sim}13$ and at $100^{\circ}C$ for half an hour, also inhibited other amylases such as salivary ${\alpha}-amylase$, pancreatic ${\alpha}-amylase$, fungal ${\alpha}-amylase$ and glucoamylase. However, it showed no inhibitory activity against ${\alpha}-glucosidase$, ${\beta}-glucosidase$, dextranase, and ${\beta}-amylase$. The kinetic studies of the inhibitor showed that its inhibitory effects on starch hydrolysis by ${\alpha}-amylase$ were noncompetitive.

  • PDF

Anti-Selective Dihydroxylation Reactions of Monosubstituted and (E)-Ester Conjugated Allylic Amines by Bulky Alkyl Groups

  • Jeon, Jong-Ho;Kim, So-Hee;Lee, Jong-Hyup;Oh, Joon-Seok;Park, Doh-Yeon;Kim, Young-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1003-1008
    • /
    • 2009
  • The $O_sO_4$-catalyzed dihydroxylations of a monosubstituted allylic amine and $\gamma-amino-\alpha,\;\beta-unsaturated$ (E)-esters with bulky alkyl groups showed a high anti-selectivity. Since the acyclic conformation of N-acyloxy protected allylic amines was efficiently controlled by a bulky t-Bu or OBO ester group, the anti diastereoselectivity of >12.5:1 was obtained without applying a chiral reagent. The synthetic utility of the present method was demonstrated by a stereoselective and efficient synthesis of an $\alpha$-glucosidase inhibitor 15 from commercially available N-Cbz-L-serine 6 in 11 steps and 31% yield.

Statistically Designed Enzymatic Hydrolysis for Optimized Production of Icariside II as a Novel Melanogenesis Inhibitor

  • Park, Jun-Seong;Park, Hye-Yoon;Rho, Ho-Sik;Ahn, Soo-Mi;Kim, Duck-Hee;Chang, Ih-Seop
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.110-117
    • /
    • 2008
  • Three kinds of prenylated flavonols, icariside I, icariside II, and icaritin, were isolated from an icariin hydrolysate and their effects on melanogenesis evaluated based on mushroom tyrosinase inhibition and quantifying the melanin contents in melanocytes. Although none of the compounds had an effect on tyrosinase activity, icariside II and icaritin both effectively inhibited the melanin contents with an $IC_{50}$ of 10.53 and $11.13{\mu}M$, respectively. Whereas icariside II was obtained from a reaction with ${\beta}$-glucosidase and cellulase, the icariin was not completely converted into icariside II. Thus, for the high-purity production of icariside II, the reaction was optimized using the response surface methodology, where an enzyme concentration of 5.0mg/ml, pH 7, $37.5^{\circ}C$, and 8 h reaction time were selected as the central conditions for the central composite design (CCD) for the enzymatic hydrolysis of icariin into icariside II using cellulase. Empirical models were developed to describe the relationships between the operating factors and the response (icariside II yield). A statistical analysis indicated that all four factors had a significant effect (p<0.01) on the icariside II production. The coefficient of determination $(R^2)$ was good for the model (0.9853), and the optimum production conditions for icariside II was an enzyme concentration of 7.5mg/ml, pH 5, $50^{\circ}C$, and 12 h reaction time. A good agreement between the predicted and experimental data under the designed optimal conditions confirmed the usefulness of the model. A laboratory pilot scale was also successful.