• Title/Summary/Keyword: $\beta$-Lactone

Search Result 54, Processing Time 0.026 seconds

Structure Elucidation of Analgesic Constituents from Yerba Buena Leaves

  • Canlas, Arlyn P.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.169-169
    • /
    • 1998
  • Three analgesic constituents: FB2c, FB6Fc, and FB10E5c from the hexane extract of Mentha cordifolia Opiz. (Yerba buena) leaves were isolated by solvent partitioning and sequential repeated vacuum liquid chromatography. Spectral analysis of the three constituents show that FB2c is ${\beta}$-sitosterol; FB10E5c is ${\beta}$-sitosteryl-${\beta}$-D-glucopyranoside; and FB6Fc is a cis-8- pentadecenyl with lactone variety. At a dosage of 100 mg/kg mouse, isolates FB2c, FB6Fc, and FB10E5c decreased the number of squirms induces by acetic acid by 70.0 %, 67.3 %, and 73.0 %, respectively.

  • PDF

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF

Suppression of the Wnt/${\beta}$-catenin Pathway by Bryostatin-1 (Bryostatin-1에 의한 Wnt/${\beta}$-Catenin 신호전달체계 저해효과)

  • Park, Seoyoung;Oh, Sangtaek
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.1
    • /
    • pp.89-92
    • /
    • 2014
  • The Wnt/${\beta}$-catenin pathway plays important roles in a variety of biological processes, such as cell proliferation, differentiation, and organ development. Here, we used a cell-based reporter assay to identify bryostatin-1, a natural macrocyclic lactone, as an inhibitor of the Wnt/${\beta}$-catenin pathway. Bryostatin-1 suppressed ${\beta}$-catenin response transcription (CRT), which was activated by a Wnt3a-conditioned medium (Wnt3a-CM), through a decrease in the intracellular ${\beta}$-catenin protein levels, without affecting its mRNA level. In addition, pharmacological inhibition of proteasome abrogated bryostatin-1-mediated down-regulation of the ${\beta}$-catenin protein level. Our findings suggest that bryostatin-1 attenuates the Wnt/${\beta}$-catenin pathway through the promotion of proteasomal degradation of ${\beta}$-catenin.

Phytochemical Constituens of Cirsium setidens Nakai and Their Cytotoxicity against Human Cancer Cell Lines

  • Lee, Won-Bin;Kwon, Hak-Cheol;Chol, Ock-Ryun;Lee, Kang-Choon;Choi, Sang-Un;Baek, Nam-In;Lee, Kang-Ro
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.628-635
    • /
    • 2002
  • Five terpenes (1~5), three fatty acids (6~8), two sterols (9 and 11), and a monogalactosyldiacyl glycerol (10) were isolated from the methylene chloride extract of the aerial part of Cirsium setidens. Their chemical structures were determined to be $\alpha$-tocopherol (1), 25-hydroperoxycycloart-23-en-3$\beta$-o1 (2), 24-hydroperoxycycloart-25-en-3$\beta$-o1 (3), mokko lactone (4), transphytol (5), 9, 12, 15-octadecatrienoic acid (6), 9, 12-octadecadienoic acid (7), hexadecanoic acid (8), acylglycosyl $\beta$-sitosterol (9), (2R)-1, 2-O-(9z, 12z, 15z-dioctadecatrienoyl)-3-O-$\beta$-D-galactopyranosyl glycerol (10) and $\beta$-sitosterol glucoside (11) by spectral evidences. Compound 3 exhibited significant cytotoxic activity against five human cancer cell lines with its $ED_{50}$ values ranging from 2.66 to 11.25 $\mu$M.

Biological Activities of Sesquiterpene Lactones isolated from Several Compositae Plants Part 1 - Cytotoxicity against Cancer Cell Lines - (수종의 국화과 식물에서 분리한 Sesquiterpene Lactone들의 생리활성(제1보) - 암세포주에 대한 세포독성 -)

  • Jang, Dae-Sik;Park, Ki-Hun;Kim, Hwan-Mook;Hong, Dong-Ho;Chun, Hyo-Kon;Kho, Yung-Hee;Yang, Min-Suk
    • Korean Journal of Pharmacognosy
    • /
    • v.29 no.3
    • /
    • pp.243-247
    • /
    • 1998
  • A diverse panel of human tumor cell lines and a mouse melanoma cell line (B16-F1) were used for the cytotoxicity test of the nine sesquiterpene lactones with ${\beta}-methylene-{\gamma}-lactone$ group isolated from Hemisteptia lyrata, Chrysanthemum zawadskii and Chrysanthemum boreale. In the cell adhesion inhibitory activity test against B16-F1 mouse melanoma cell, hemistepcin B, cumambrin B, costunolide and tulipinolide were shown significant activities with $IC_{50}$ range of 2.2, 4.1, 0.9 and $0.3\;{\mu}g/ml$, respectively. In the cytotoxicity test against human tumor cells, the most active compound was costunolide having $IC_{50}$ values of below $0.3\;{\mu}g/ml$ against all the tested cell lines except for UACC62. Cumambrin A, hendelin and costunolide exhibited more strong activity against HCT15 and UO-31 cell lines than a positive control, adriamycin. All tested compounds showed an $IC_{50}$ values of below $5.0\;{\mu}g/ml$ against all the tested cell lines.

  • PDF

The constituents of taraxacum hallaisanensis roots

  • Yang, Deuk-Suk;Whang, Wan-Kyunn;Kim, Il-Hyuk
    • Archives of Pharmacal Research
    • /
    • v.19 no.6
    • /
    • pp.507-513
    • /
    • 1996
  • Three sesquiterpene lactone compounds, two novel(1.betha.,3.betha.-dihydroxy-6.betha.,11.betha.,4.alpha.,5.alpha.,7.alpha.H -eudesm-12, 6-olide-1-O-.betha.-D-glucopyranoside, 1.betha.,3.betha.-dihydroxy-6.betha.,11.betha.,4.alpha.,5.alpha.,7.alpha.H-eudes m-12,6-olide-1-O-.betha.-D-glucopyranoside) and 1.betha.,3.betha.-dihydroxy-6.betha.,11.betha.,4.alpha.,5.alpha., 7.alpha.H-eudesm-12,6-olide were isolated from the aqueous fraction of MeOH extract of the roots from Taraxacum hallaisanensis (Compositae) employing Amberlite XAD-2, ODS-gel, silica gel and Sephadex LH-20 column chromatographics. Another known compound, (-)-epicatechin, was isolated from the aqueous fraction of the MeOH extract. The total MeOH extract also contained phytosterol and a mixture of .betha.-amyrin acetate, .alpha.-amyrin acetate and lupeol acetate. Structures of isolated compounds were elucidated by spectroscopic parameters of IR, Mass, /sup 13/C-NMR, /sup 1/H-NMR, /sup 1/H-/sup 1/H COSY, /sup 13/C-/sup 1/H COSY and HMBC.

  • PDF

Protective Effect of Artificially Enhanced Level of L-Ascorbic Acid against Water Deficit-Induced Oxidative Stress in Rice Seedlings

  • Boo, Yong Chool;Cho, Moonjae;Jung, Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.2
    • /
    • pp.66-70
    • /
    • 1999
  • Effects of the enhanced level of L-ascorbic acid (AA) on the water deficit-induced oxidative damage were studied in rice (Oryza sativa L.) seedlings. The seedlings sprayed with 20 to 80 mM L-galactono-${\gamma}$-lactone (GL), a putative precursor of AA, showed 2 to 5-fold higher levels of AA compared with controls. Pretreatment of the seedlings with GL prior to water stress imposition caused virtually no effect on dehydration of tissues during water deficit but substantially mitigated oxidative injury, as accessed by 2-thiobarbituric acid-reactive substances, ${\alpha}$-tocopherol, chlorophylls and ${\beta}$-carotene. Proline accumulation during water stress was also significantly lowered in the treated seedlings. In a complementary experiment, AA retarded photodegradation of ${\alpha}$-tocopherol in isolated thylakoids far more efficiently than glutathione. GL in itself did not show any noticeable reactivity toward ${\alpha}$-tocopheroxyl radical. The results demonstrate the antioxidative function of AA in rice seedlings encountering water-limited environments, suggesting a critical role of AA as a defense against oxidative stress in plants.

  • PDF

Genes of Rhodobacter sphaeroides 2.4.1 Regulated by Innate Quorum-Sensing Signal, 7,8-cis-N-(Tetradecenoyl) Homoserine Lactone

  • Hwang, Won;Lee, Ko-Eun;Lee, Jeong-Kug;Park, Byoung-Chul;Kim, Kun-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.219-227
    • /
    • 2008
  • The free-living photoheterotrophic Gram-negative bacterium Rhodobacter sphaeroides possesses a quorum-sensing (QS) regulatory system mediated by CerR-CerI, a member of the LuxR-LuxI family. To identify the genes affected by the regulatory system, random lacZ fusions were generated in the genome of R. sphaeroides strain 2.4.1 using a promoter-trapping vector, pSG2. About 20,000 clones were screened and 23 showed a significantly different level of ${\beta}$-gal activities upon the addition of synthetic 7,8-cis-N-tetradecenoyl-homoserine lactone (RAI). Among these 23 clones, the clone showing the highest level of induction was selected for further study, where about a ten-fold increase of ${\beta}$-gal activity was exhibited in the presence of RAI and induction was shown to be required for cerR. In this clone, the lacZ reporter was inserted in a putative gene that exhibited a low homology with catD. A genetic analysis showed that the expression of the catD homolog was initiated from a promoter of another gene present upstream of the catD. This upstream gene showed a strong homology with luxR and hence was named qsrR (quorum-sensing regulation regulator). A comparison of the total protein expression profiles for the wild-type cells and qsrR-null mutant cells using two-dimensional gel electrophoresis and a MALDI-TOF analysis allowed the identification of sets of genes modulated by the luxR homolog.

Development of a Sensitive Bioassay Method for Quorum Sensing Inhibitor Screening Using a Recombinant Agrobacterium tumefaciens

  • Kim Yeon Hee;Kim Young Hee;Kim Jung Sun;Park Sunghoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.322-328
    • /
    • 2005
  • Acylhomoserine lactones (AHLs) are known to be the triggering molecules in the quorum sensing mechanism of many gram-negative bacteria. In order to detect AHL inhibitors that are potential biofilm inhibitors, a convenient and sensitive bioassay was developed based on the $\beta$-galactosidase activity ($\beta$-GAL) of a recombinant Agrobacterium tumefaciens strain. A series of commercially available AHLs were tested for inducing $\beta$-GAL at varying concentrations in agar-plate and liquid cultures of the reporter strain. All AHLs tested exhibited a concentration­dependent induction, and octanoyl homoserine lactone (OHL) showed the highest sensitivity with a detection limit of 0.1 nM in the liquid culture assay. When fimbrolide, a known quorum sensing inhibitor, was added, induction of $\beta$-GAL by OHL was repressed. The repression at a constant OHL concentration was dependent on the fimbrolide concentration with the detection limit below 1 ppm, indicating that this assay is a sensitive method for screening AHL inhibitors.

Quorum Sensing of Rhodobacter sphaeroides Negatively Regulates Cellular Poly-$\beta$-Hydroxybutyrate Content Under Aerobic Growth Conditions

  • Lee, Jeong-K.;Kho, Dhong-Hyo;Jang, Ji-Hee;Kim, Hye-Sun;Kim, Kun-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.477-481
    • /
    • 2003
  • The community escape response of Rhodobacter sphaeroides is exerted through the action of CerR and CerI, which code for a LuxR-type regulatory protein and acylhomoserine lactone synthase, respectively. Deletion of chromosomal DNA including cerR and cerI (mutant RI) or insertional interruption of cert (mutant AP3) resulted in two-fold increase in the cellular poly-${\beta}$-hydroxybutyrate (PHB) content In comparison with the wild-type under aerobic growth conditions. The PHB synthase (PhbC) activities of the cer mutants were doubled, and the enzyme expression was regulated at the level of phbC transcription. Thus, CerR, possibly in response to autoinducer (AI), appears to modulate the PHB content of aerobically grown cells by downregulating phbC transcription.