DOI QR코드

DOI QR Code

Suppression of the Wnt/${\beta}$-catenin Pathway by Bryostatin-1

Bryostatin-1에 의한 Wnt/${\beta}$-Catenin 신호전달체계 저해효과

  • Park, Seoyoung (Department of Bio and Fermentation Convergence Technology, Kookmin University) ;
  • Oh, Sangtaek (Department of Bio and Fermentation Convergence Technology, Kookmin University)
  • 박서영 (국민대학교 자연대 바이오발효융합학과) ;
  • 오상택 (국민대학교 자연대 바이오발효융합학과)
  • Received : 2014.02.03
  • Accepted : 2014.02.18
  • Published : 2014.03.28

Abstract

The Wnt/${\beta}$-catenin pathway plays important roles in a variety of biological processes, such as cell proliferation, differentiation, and organ development. Here, we used a cell-based reporter assay to identify bryostatin-1, a natural macrocyclic lactone, as an inhibitor of the Wnt/${\beta}$-catenin pathway. Bryostatin-1 suppressed ${\beta}$-catenin response transcription (CRT), which was activated by a Wnt3a-conditioned medium (Wnt3a-CM), through a decrease in the intracellular ${\beta}$-catenin protein levels, without affecting its mRNA level. In addition, pharmacological inhibition of proteasome abrogated bryostatin-1-mediated down-regulation of the ${\beta}$-catenin protein level. Our findings suggest that bryostatin-1 attenuates the Wnt/${\beta}$-catenin pathway through the promotion of proteasomal degradation of ${\beta}$-catenin.

Wnt/${\beta}$-catenin 신호전달체계는 세포 증식, 분화, 그리고 기관 발생과 같은 다양한 생명현상에 중요한 역할을 한다. 본 연구에서는 세포기반 스크리닝 기법을 사용하여 Wnt/${\beta}$-catenin 신호전달체계를 저해하는 bryostatin-1을 발굴하였다. Bryostain 1은 ${\beta}$-catenin의 mRNA 수준에는 영향을 미치지 않는 반면 세포 내 ${\beta}$-catenin 단백질 수준을 감소시킴으로 Wnt3a-CM에 의해 활성화 된 ${\beta}$-catenin response transcription (CRT)을 억제하였다. 또한 프로테아좀의 활성을 저해하였을 경우 bryostatin-1에 의한 ${\beta}$-catenin 수준 감소가 억제되었다. 본 연구의 결과들로부터 bryostatin-1이 프로테아좀에 의한 ${\beta}$-catenin 단백질 분해를 촉진함으로써 Wnt/${\beta}$-catenin 신호전달체계를 저해함을 확인하였다.

Keywords

References

  1. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. 1997. $\beta$- Catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 16: 3797-3804. https://doi.org/10.1093/emboj/16.13.3797
  2. Dignam JD, Lebovitz RM, Roeder RG. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11: 1475- 1489. https://doi.org/10.1093/nar/11.5.1475
  3. Fearnhead NS, Britton MP, Bodmer WF. 2001. The ABC of APC. Hum. Mol. Genet. 10: 721-733. https://doi.org/10.1093/hmg/10.7.721
  4. Giles RH, van Es JH, Clevers H. 2003. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim. Biophys. Acta. 1653: 1-24.
  5. Hale KJ, Hummersone MG, Manaviazar S, Frigerio M. 2002. The chemistry and biology of the bryostatin antitumour macrolides. Nat. Prod. Rep. 19: 413-453. https://doi.org/10.1039/b009211h
  6. He TC, Chan TA, Vogelstein B, Kinzler KW. 1999. PPARO is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell 99: 335-345. https://doi.org/10.1016/S0092-8674(00)81664-5
  7. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW. 1998. Identification of c-MYC as a target of the APC pathway. Science 281: 1509- 1512. https://doi.org/10.1126/science.281.5382.1509
  8. Jaggi M, Chauhan SC, Du C, Balaji KC. 2008. Bryostatin 1 modulates $\beta$-catenin subcellular localization and transcription activity through protein kinase D1 activation. Mol. Cancer Ther. 7: 2703-271. https://doi.org/10.1158/1535-7163.MCT-08-0119
  9. Karim R, Tse G, Putti T, Scolyer R, Lee S. 2004. The significance of the Wnt pathway in the pathology of human cancers. Pathology 36: 120-128. https://doi.org/10.1080/00313020410001671957
  10. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW, et al. 1997. Constitutive transcriptional activation by a $\beta$-catenin-Tcf complex in APC -/- colon carcinoma. Science 275: 1784-1787. https://doi.org/10.1126/science.275.5307.1784
  11. Lee E, Salic A, Kruger R, Heinrich R, Kirschner MW. 2003. The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol. 1: 116-132.
  12. Liu J, Stevens J, Rote CA, Yost HJ, Hu Y, Neufeld KL, et al. 2001. Siah-1 mediates a novel $\beta$-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol. Cell 7: 927-936. https://doi.org/10.1016/S1097-2765(01)00241-6
  13. Matsuzawa SI, Reed JC. 2001. Siah-1, SIP, and Ebi collaborate in a novel pathway for $\beta$-catenin degradation linked to p53 responses. Mol. Cell 7: 915-926. https://doi.org/10.1016/S1097-2765(01)00242-8
  14. Miller JR. 2002. The Wnts. Genome Biol. 3: reviews3001.1- reviews3001.15.
  15. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, et al. 1997. Activation of $\beta$-catenin-Tcf signaling in colon cancer by mutations in $\beta$-catenin or APC. Science 275: 1787-1790. https://doi.org/10.1126/science.275.5307.1787
  16. Morin PJ. 1999. $\beta$-catenin signaling and cancer. Bioessays 21: 1021-1030. https://doi.org/10.1002/(SICI)1521-1878(199912)22:1<1021::AID-BIES6>3.0.CO;2-P
  17. Orford K, Crockett C, Jensen JP, Weissman AM, Byers SW. 1997. Serine phosphorylation-regulated ubquitination and degradation of $\beta$-catenin. J. Biol. Chem. 272: 24735-24738. https://doi.org/10.1074/jbc.272.40.24735
  18. Pettit GR, Herald CL, Doubek DL, Herald DL, Arnold E, Clardy J. 1982. Isolation and structure of bryostatin 1. J. Am. Chem. Soc. 104: 6846-6848. https://doi.org/10.1021/ja00388a092
  19. Polakis P. 2002. Casein kinase 1: a Wnt'er of disconnect. Curr. Biol. 12: R499-R501. https://doi.org/10.1016/S0960-9822(02)00969-7
  20. Shaha SP, Tomic J, Shi Y, Pham T, Mero P, White D, et al. 2009. Prolonging microtubule dysruption enhances the immunogenicity of chronic lymphocytic leukaemia cells. Clin. Exp. Immunol. 158: 186-198. https://doi.org/10.1111/j.1365-2249.2009.04003.x
  21. Sun MK, Alkon DL. 2005. Dual effects of bryostatin-1 on spatial memory and depression. Eur. J. Pharm. 512: 43-51. https://doi.org/10.1016/j.ejphar.2005.02.028
  22. Takahashi M, Tsunoda T, Seiki M, Nakamura Y, Furukawa Y. 2002. Identification of membrane-type matrix metalloproteinase- 1 as a target of the $\beta$-catenin/Tcf4 complex in human colorectal cancers. Oncogene 21: 5861-5867. https://doi.org/10.1038/sj.onc.1205755
  23. Tetsu O, McCormick F. 1999. $\beta$-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398: 422-426. https://doi.org/10.1038/18884