• 제목/요약/키워드: $\beta$-D-glucosidase

검색결과 89건 처리시간 0.031초

Characterization of Paenibacillus sp. MBT213 Isolated from Raw Milk and Its Ability to Convert Ginsenoside Rb1 into Ginsenoside Rd from Panax ginseng

  • Renchinkhand, Gereltuya;Cho, Soo Hyun;Urgamal, Magsar;Park, Young W;Nam, Joong Hyeon;Bae, Hyung Churl;Song, Gyu Yong;Nam, Myoung Soo
    • 한국축산식품학회지
    • /
    • 제37권5호
    • /
    • pp.735-742
    • /
    • 2017
  • This study was conducted to isolate and characterize Paenibacillus sp. MBT213 possessing ${\beta}$-glucosidase activity from raw milk, and examine the enzymatic capacity on the hydrolysis of a major ginsenoside ($Rb_1$). Strain MBT213 was found to have a high hydrolytic ability on ginsenoside $Rb_1$ by Esculin Iron Agar test. 16S rDNA analysis revealed that MBT213 was Paenibacillu sp. Crude enzyme of MBT213 strain exhibited high conversion capacity on ginsenoside $Rb_1$ into ginsenoside Rd proven by TLC and HPLC analyses. The API ZYM kit confirmed that Paenibacillu sp. MBT213 exerted higher ${\beta}$-glucosidase and ${\beta}$-galactosidase activity than other strains. Optimum pH and temperature for crude enzyme were found at 7.0 and $35^{\circ}C$ in hydrolysis of ginsenoside $Rb_1$. After 10 d of optimal reaction conditions for the crude enzyme, ginsenoside $Rb_1$ fully converted to ginsenoside Rd. Ginseng roots (20%) were fermented for 14 d, and analyzed by HPLC showed that amount of ginsenoside $Rb_1$ significantly decreased, while that of ginsenoside Rd was significantly increased. The study confirmed that the ${\beta}$-glucosidase produced by Paenibacillus sp. MBT213 can hydrolyze the major ginsenoside $Rb_1$ and convert to Rd during fermentation of the ginseng. The ${\beta}$-glucosidase activity of this novel Paenibacillus sp. MBT213 strain may be utilized in development of variety of health foods, dairy foods and pharmaceutical products.

Purification and Characterization of Extracellular $\beta$-Glucosidase from Sinorhizobium kostiense AFK-13 and Its Algal Lytic Effect on Anabaena flos-aquae

  • Kim, Jeong-Dong;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권5호
    • /
    • pp.745-752
    • /
    • 2007
  • A $\beta$-glucosidase from the algal lytic bacterium Sinorhizobium kostiense AFK-13, grown in complex media containing cellobiose, was purified to homogeneity by successive ammonium sulfate precipitation, and anion-exchange and gel-filtration chromatographies. The enzyme was shown to be a monomeric protein with an apparent molecular mass of 52 kDa and isoelectric point of approximately 5.4. It was optimally active at pH 6.0 and $40^{\circ}C$ and possessed a specific activity of 260.4 U/mg of protein against $4-nitrophenyl-\beta-D-glucopyranoside$(pNPG). A temperature-stability analysis demonstrated that the enzyme was unstable at $50^{\circ}C$ and above. The enzyme did not require divalent cations for activity, and its activity was significantly suppressed by $Hg^{+2}\;and\;Ag^+$, whereas sodium dodecyl sulfate(SDS) and Triton X-100 moderately inhibited the enzyme to under 70% of its initial activity. In an algal lytic activity analysis, the growth of cyanobacteria, such as Anabaena flos-aquae, A. cylindrica, A. macrospora, Oscillatoria sancta, and Microcystis aeruginosa, was strongly inhibited by a treatment of 20 ppm/disc or 30 ppm/disc concentration of the enzyme.

플라보노이드배당체에 의한 Bacteroides JY-6의 ${\beta}$-글루코시다제 및 ${\alpha}$-람노시다제의 유도 (Induction of ${\beta}$-Glucosidase and ${\alpha}$-Rhammosidase of Bacteroides JY-6 by Flavonoid Glycosides)

  • 장일성;박종백;김동현
    • 약학회지
    • /
    • 제40권3호
    • /
    • pp.335-339
    • /
    • 1996
  • Optimal medium for growth and glycosidases production of Bacteroides JY-6, an human intestinal bacterium, was general anaerobic medium or tryptic soy broth containing sod ium thioglycolate and ascorbic acid. By cocultivation of Staphylococcus R-48, Bacteroides JY-6 could be cultured in LB broth unable to culture JY-6. Heated Staphylococcus R-48 was also the inducer of the production of Bacteroides JY-6 glycosidases. These glycosidases were induced well by natural flavonoid glycosides, such as poncirin, naringin and rutin, but were not by synthetic substrates, p-nitrophenyl ${\beta$-D-glucopyranoside and p-nitrophenyl ${\alpha}$-L-rhanmopyranoside.

  • PDF

한국의 임상과 자연환경에서 분리된 Cryptococcus neoformans의 혈청형과 효소생성능 (Serotype and Enzymatic Profile of Crypfococcus neoformans Isolates from Clinical and Environmental Sources in Korea)

  • 황수명;오광석;이경원
    • 미생물학회지
    • /
    • 제42권4호
    • /
    • pp.257-264
    • /
    • 2006
  • 한국의 임상검체와 자연환경에서 분리된 Cryptococcus neoformans 58주에 대한 혈청형과 세포외효소 생성능에 관한 셍물학적 특성을 조사하였다. 환자로부터 분리된 임상균주 51주 중 48주는 혈청형 A (94.1%) 였으며 2주는 혈청형 B (3.92%),그리고 나머지 1주는 혈청형 D (1.96%)였다. 자연환경에서 분리된 7주는 비둘기 분변에서 분리된 것들이며 모두 혈정형 A였다. 모든 균주는 proteinase와 phnospholipase를 생성하였고, 또한 API-ZYM system을 이용한 19종류의 효소생성능 시험에서는 alkaline phosphatase, esterase (C4), esterase lipase (C8), leucine arylamidase, acid phosphatase, naphthol-AS-BI-phosphohydrolase, $\alpha$-glucosidase, 그리고 $\beta$-glucosidase를 생성하였으나, N-acetyl-$\beta$-glucosarninidase는 39주 (67.2%)에서만 생성하였다. 혈청형 B로 동정된 2주와 혈청형 A로 동정된 균주중 1주는$\beta$-glucuronidase를 생성하였다. 본 연구에 사용된 총21종류의 효소 생성능 시험을 기초로 하여 생물형을 구분하였는데, 모두 4가지의 유형을 나타내었고, 또한 임상과 환경균주에서 혈정형과 생물형 특성간의 유의한 상관성를 나타내었다.

Exo-O-Glycosylhydrolases in Korea Ginseng Roots

  • Yelena V.Sundukova;Lee, Mi-Ja;Park, Hoon
    • Journal of Ginseng Research
    • /
    • 제24권2호
    • /
    • pp.89-93
    • /
    • 2000
  • 6년생 고려인삼근(panax ginseng C.A. Meyer)중 수종의 exo-O-glycosylhydrolase 활성을 중심부와 주피부로 나누어 생육시기별로 조사하였다. $\alpha$-D-galactosidase, $\beta$-D-galactosidase, $\alpha$-L-man-nosidase , N-acetyl-$\beta$-D-giucosarninidase, $\alpha$-D-galactosidase, $\alpha$-L-arabinosidase와 $\beta$-D-fucosidase는 중심부와 주피부에서 모두 활성이 있으나 $\beta$-L-mannosidase, $\alpha$-D-xylosidase, $\beta$-D-xylosidase, $\alpha$-D-rhamnosidase와 $\beta$-D-glucosidase의 효소활성은 검색되지 않았다. $\beta$-D-galactosidase의 활성은 연중 높게 유지되었고 $\alpha$-L-mannosidase의 활성도 높은 경향이었다. 인삼근중 탄수화물 대사효소의 활성은 생육시기와 환경조건 및 부위에 따라 매우 다른 양상을 나타내었다.

  • PDF

Enzymatic Biotransformation of Ginsenoside Rb1 and Gypenoside XVII into Ginsenosides Rd and F2 by Recombinant β-glucosidase from Flavobacterium johnsoniae

  • Hong, Hao;Cui, Chang-Hao;Kim, Jin-Kwang;Jin, Feng-Xie;Kim, Sun-Chang;Im, Wan-Taek
    • Journal of Ginseng Research
    • /
    • 제36권4호
    • /
    • pp.418-424
    • /
    • 2012
  • This study focused on the enzymatic biotransformation of the major ginsenoside Rb1 into Rd for the mass production of minor ginsenosides using a novel recombinant ${\beta}$-glucosidase from Flavobacterium johnsoniae. The gene (bglF3) consisting of 2,235 bp (744 amino acid residues) was cloned and the recombinant enzyme overexpressed in Escherichia coli BL21(DE3) was characterized. This enzyme could transform ginsenoside Rb1 and gypenoside XVII to the ginsenosides Rd and F2, respectively. The glutathione S-transferase (GST) fused BglF3 was purified with GST-bind agarose resin and characterized. The kinetic parameters for ${\beta}$-glucosidase had apparent $K_m$ values of $0.91{\pm}0.02$ and $2.84{\pm}0.05$ mM and $V_{max}$ values of $5.75{\pm}0.12$ and $0.71{\pm}0.01{\mu}mol{\cdot}min^{-1}{\cdot}mg$ of $protein^{-1}$ against p-nitrophenyl-${\beta}$-D-glucopyranoside and Rb1, respectively. At optimal conditions of pH 6.0 and $37^{\circ}C$, BglF3 could only hydrolyze the outer glucose moiety of ginsenoside Rb1 and gypenoside XVII at the C-20 position of aglycon into ginsenosides Rd and F2, respectively. These results indicate that the recombinant BglF3 could be useful for the mass production of ginsenosides Rd and F2 in the pharmaceutical or cosmetic industry.

Influence of Gibberellic Acid on α-D-Galactosidase Activity in the Grape Berry

  • Kang, Han-Chul;Lee, Seon-Hwa;Kim, Jong-Bum
    • Journal of Applied Biological Chemistry
    • /
    • 제44권2호
    • /
    • pp.53-58
    • /
    • 2001
  • Glycosidase activities in the grape flesh (Marguerite) were assayed, and the order of activity was marked as follows: ${\alpha}$-D-galactosidase>${\alpha}$-D-mannosidase>${\alpha}$-D-glucosidase>${\beta}$-D-galactosidase>${\beta}$-D-glucosidase. Of these glycosidases, ${\alpha}$- and ${\beta}$-D-galactosidases were prominently expressed by the treatment of gibberellic acid, resulting in 56 and 238% increase of activity, respectively. Most of ${\alpha}$-D-galactosidase was found in the flesh texture, and the activity increase by gibberellic acid occurred mostly in this tissue. The increase in ${\alpha}$-D-galactosidase activity was dependent on the concentration of gibberellic acid treated, showing a positive correlation. Gibberellic acid affected the content of total protein in the grape flesh, 49% increase by 75 ppm treatment. Above this concentration, higher gibberellic acid level did not influence the protein expression. Specific activity of the ${\alpha}$-D-galactosidase still increased, showing 24% increase in activity. Grape flesh subjected by gibberellic acid (100 ppm) resulted in the increased activity against a natural substrate, stachyose, showing 55% increase in activity from the grapes treated with 100 ppm of gibberellic acid. Other natural substrates, such as melibiose and raffinose, were also considerably hydrolyzed, and the extent was similar to that of stachyose hydrolysis. During postharvest storage, ${\alpha}$-D-galactosidase activity in the grape flesh increased by 51% after 20 days and then declined slowly.

  • PDF

두둑을 재활용한 한국형 무경운 유기 농업 IV. 분할관수와 유기물처리에 의한 시설 고추 유기재배 토양 미생물상과 토양 효소의 변화 (Korean-Style No-tillage Organic Agriculture on Recycled Ridge IV. Changes in Soil Microorganisms and Enzymes by Split Irrigation and Organic Matter Application in Organic Farming of Red Pepper in Plastic Film Greenhouse)

  • 양승구;신길호;송용수;김길용;정우진
    • 한국유기농업학회지
    • /
    • 제25권2호
    • /
    • pp.311-328
    • /
    • 2017
  • 두둑과 고랑을 재활용한 한국형 무경운 농업에서 유기물 투입과 관수 효과를 구명하고자 무경운 토양에서 시험을 수행하였다. 1. 토양 미생물상 1회 전량관수 조건에서 대두박 투입 처리구의 토양 세균과 곰팡이 수는 대두박 무 투입구에 비하여 많았다. 그리고 유기질비료 투입량이 표준시비량 66%까지 증가되면 세균과 곰팡이 수는 증가되었으나, 그 이상에서는 세균과 곰팡이 수가 감소되는 경향이었다. 곰팡이/세균 비율은 관수 방법과 관계없이 대두박 투입 처리에서 0.6과 1.1로, 무투입 처리의 0.2와 0.5보다 2배 이상 높았다. 1회 전량 관수 조건에서 유기질 비료 시비량이 증가되면 대두박을 투입한 처리는 방선균 수는 감소되는 경향이었으나, 대두박 무투입에서는 증가되었다. 2회 분할 관수는 1회 전량관수에 비하여 대두박 무 투입 조건에서 세균과 곰팡이 수가 증가되었으나, 대두박 투입조건에서는 방선균 수가 증가되었다. 2. 토양 효소 유기질 비료의 시비량이 증가되면 토양 내 Chitinase 활성은 대두박 투입 토양에서 감소되고, 대두박 무 투입에서는 증가되는 경향이었다. 그러나 대두박을 투입에 관계없이 2회 분할 관수는 1회 전량관수에 비하여 Chitinase 활성이 증가되었다. 1회 전량관수 조건에서 대두박 투입 처리구의 ${\beta}$-Glucosidase 활성은 무투입에 비하여 높았으며, 유기질 비료 투입량이 증가되면 표준시비량의 66%까지는 ${\beta}$-Glucosidase 활성이 증가되었으나, 표준시비량에서는 감소되었다. 대두박 무투입 조건에서 2회 분할관수 토양 내 ${\beta}$-Glucosidase 활성은 1회 전량관수에 비하여 현저하게 증가되었다. 1회 전량관수 조건에서 대두박을 투입한 처리의 N-acetyl-${\beta}$-D-glucosaminidase의 활성은 무투입구에 비하여 높았다. 대두박 투입 처리에서 유기질 비료 투입량이 표준시비량의 66%까지 증가되면 N-acetyl-${\beta}$-D-glucosaminidase의 활성은 증가되었으나, 표준시비량에서는 유의적인 차이가 없었다. 대두박 무투입 조건에서 2회 분할관수는 1회 전량관수에 비하여 N-acetyl-${\beta}$-D-glucosaminidase의 활성은 증가되었다. 대두박 무투입 조건에서 유기질 비료 시비량이 표준량의 66% 수준에서는 토양 내 산성인산가수분해효소(Acid phosphatase)의 활성 높았다. 대두박 투입 조건에서는 유기질 비료 시비량이 증가되면 산성인산가수분해효소(Acid phosphatase)의 활성은 증가되는 경향이었다. 3. 토양 AMF 대두박 무투입 조건에서 유기질 비료의 투입량이 표준시비량의 66%까지 증가되면 토양의 내생균근균의(AMF) 포자수는 증가되었으나, 유기질 비료 투입량이 표준시비량에서는 근균의 포자수는 감소되었다. 그러나 대두박 투입에서 근균의 포자수는 유기질 비료 투입량에 따른 유의적인 차이가 없었다. 그리고 내생 근균의 고추 뿌리에 정착률은 대두박 투입량에 따른 유의적인 차이가 없었으며, 2회 분할 관수도 같은 경향이었다.

Mutational Analysis of Thermus caldophilus GK24 ${\beta}$-Glycosidase: Role of His119 in Substrate Binding and Enzyme Activity

  • Oh, Eun-Joo;Lee, Yoon-Jin;Choi, Jeong-Jin;Seo, Moo-Seok;Lee, Mi-Sun;Kim, Gun-A;Kwon, Suk-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.287-294
    • /
    • 2008
  • Three amino acid residues (His119, Glu164, and Glu338) in the active site of Thermus caldophilus GK24 ${\beta}$-glycosidase (Tca ${\beta}$-glycosidase), a family 1 glycosyl hydrolase, were mutated by site-directed mutagenesis. To verify the key catalytic residues, Glu164 and Glu338 were changed to Gly and Gln, respectively. The E164G mutation resulted in drastic reductions of both ${\beta}$-galactosidase and ${\beta}$-glucosidase activities, and the E338Q mutation caused complete loss of activity, confirming that the two residues are essential for the reaction process of glycosidic linkage hydrolysis. To investigate the role of His119 in substrate binding and enzyme activity, the residue was substituted with Gly. The H119G mutant showed 53-fold reduced activity on 5mM p-nitrophenyl ${\beta}$-D-galactopyranoside, when compared with the wild type; however, both the wild-type and mutant enzymes showed similar activity on 5mM p-nitrophenyl ${\beta}$-D-glucopyranoside at $75^{\circ}C$. Kinetic analysis with p-nitrophenyl ${\beta}$-D-galactopyranoside revealed that the $k_{cat}$ value of the H119G mutant was 76.3-fold lower than that of the wild type, but the $K_m$ of the mutant was 15.3-fold higher than that of the wild type owing to the much lower affinity of the mutant. Thus, the catalytic efficiency $(k_{cat}/K_m)$ of the mutant decreased to 0.08% to that of the wild type. The $k_{cat}$ value of the H119G mutant for p-nitrophenyl ${\beta}$-D-glucopyranoside was 5.l-fold higher than that of the wild type, but the catalytic efficiency of the mutant was 2.5% of that of the wild type. The H119G mutation gave rise to changes in optima pH (from 5.5-6.5 to 5.5) and temperature (from $90^{\circ}C\;to\;80-85^{\circ}C$). This difference of temperature optima originated in the decrease of H119G's thermostability. These results indicate that His119 is a crucial residue in ${\beta}$-galactosidase and ${\beta}$-glucosidase activities and also influences the enzyme's substrate binding affinity and thermostability.

Purification and Characterization of a Thermostable ${\beta}-Glycosidase$ from Thermus caldophilus GK24

  • Yoo, Jin-Sang;Han, Ki-Woong;Kim, Hyun-Kyu;Kim, Min-Hong;Kwon, Suk-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권5호
    • /
    • pp.638-642
    • /
    • 2000
  • A ${\beta}-glycosidase$ enzyme with $\beta$-D-fucosidase, ${\beta}-D-galactosidase$, and $\beta$-D-glucosidase activities has been purified from Thermus caldophilus GK24. The enzyme was monomeric with a molecular mass of 49 kDa, as evidenced by SDS-PAGE. The $K_m$ values for p-nitrophenyl ${\beta}-D-fucopyranoside$ (p-NPFuc), p-nitrophenyl ${\beta}-D-galactopyranoside$ (p-NPGal), and p-nitrophenyl ${\beta}-D-glucopyranoside$ (p-NPGlu) were 0.23 mM, 6.25 mM, and 0.28 mM, respectively. The enzyme showed optimal pH ranging between 5.5-6.5 and maximum temperature in the range of $85-90^{\circ}C$ for all the above mentioned activities. The half-life of the enzyme in sodium phosphate buffer (pH 6.0) at $80^{\circ}C$ was approximately 7 h. The p-NPGal hydrolyzing activity of Tca ${\beta}-glycosidase$ was strongly activated by L-histidine, while the p-NPFuc and p-NPGlu hydrolyzing activities of Tca ${\beta}-glycosidase$ were not affected at all by the amino acid. These results suggest differences in the conformation or in the reactive residues at the active site of Tca ${\beta}-glycosidase$.

  • PDF