Browse > Article

Purification and Characterization of Extracellular $\beta$-Glucosidase from Sinorhizobium kostiense AFK-13 and Its Algal Lytic Effect on Anabaena flos-aquae  

Kim, Jeong-Dong (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University)
Lee, Choul-Gyun (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.5, 2007 , pp. 745-752 More about this Journal
Abstract
A $\beta$-glucosidase from the algal lytic bacterium Sinorhizobium kostiense AFK-13, grown in complex media containing cellobiose, was purified to homogeneity by successive ammonium sulfate precipitation, and anion-exchange and gel-filtration chromatographies. The enzyme was shown to be a monomeric protein with an apparent molecular mass of 52 kDa and isoelectric point of approximately 5.4. It was optimally active at pH 6.0 and $40^{\circ}C$ and possessed a specific activity of 260.4 U/mg of protein against $4-nitrophenyl-\beta-D-glucopyranoside$(pNPG). A temperature-stability analysis demonstrated that the enzyme was unstable at $50^{\circ}C$ and above. The enzyme did not require divalent cations for activity, and its activity was significantly suppressed by $Hg^{+2}\;and\;Ag^+$, whereas sodium dodecyl sulfate(SDS) and Triton X-100 moderately inhibited the enzyme to under 70% of its initial activity. In an algal lytic activity analysis, the growth of cyanobacteria, such as Anabaena flos-aquae, A. cylindrica, A. macrospora, Oscillatoria sancta, and Microcystis aeruginosa, was strongly inhibited by a treatment of 20 ppm/disc or 30 ppm/disc concentration of the enzyme.
Keywords
$\beta$-Glucosidase; Sinorhizobium kostiense; extracellular; algal lytic;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Berger, P. S., J. Rho, and H. B. Gunner. 1979. Bacterial suppression of Chlorella by hydroxylamine production. Water Res. 13: 267-273   DOI   ScienceOn
2 Castenholz, R. W. 1988. Culturing methods for cyanobacteria. Methods Enzymol. 167: 68-92   DOI
3 Colombo, V., A. A. H. Vieira, and G. Moraes. 2004. Activity of glycosidases from freshwater heterotrophic microorganisms on the degradation of extrace luIlar polysaccharide produced by Anabaena spiroides (Cyanobacteria). Braz. J. Microbiol. 35: 110-116   DOI   ScienceOn
4 Kim, J.-D., and C.-G. Lee. 2006. Antialgal effect of a novel palysaccharolytic Sinorhizobium kostiense AFK-13 an Anabaena flos-aquae causing water bloom. J. Microbiol. Biotechnol. 16: 1613-1621   과학기술학회마을
5 Nelson, N. J. 1957. Calorimetric analysis of sugar. Methods Enzymol. 3: 85-86
6 Unanue, M., B. Ayo, D. Slezak, G. J. Herndi, and J. Irriberri. 1999. Ectoenzymatic activity and uptake of monomers in marine bacterioplankton described by a biphasic kinetic model. Mar. Ecol. 37: 36-48
7 Villena, M. A., J. F. U. Iranzo, R. R. C. Otero, and A. I. B. Perez. 2005. Optimization of a rapid method for studying the cellular location of beta-glucosidase activity in wine yeasts. J. Appl. Microbiol. 99: 558-564   DOI   ScienceOn
8 Wang, X. L., L. Y Gong, S. K. Liang, X. R. Han, C. J. Zhu, and Y. B. Li. 2005. Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aerugznosa. Harmful Algae 4: 433-443   DOI   ScienceOn
9 Villena, M. A., J. F. U. Iranzo, S. B. Gundllapalli, R. R. C. Otero, and A. I. B. Perez. 2006. Characterization of an exocellular beta-glucosidase from Debaryomyces pseudopolymorphus. Enzyme Microb. Technol. 39: 229-234   DOI   ScienceOn
10 Jung, H.-K., G.-D. Kim, and T.-J. Choi. 2006. Activity of early gene promaters from a Korean Chlorella virus isolate in transformed Chlorella algae. J. Microbiol. Biotechnol.16: 952-960   과학기술학회마을
11 Lee, S. O., J. Kato, N. Takiguchi, A. Kuroda, T. lkeda, A. Mitsutani, and H. Ohtake. 2000. lnvolvement of an extracellular protease in algicidal activity of the marine bacterium Pseudoaheromonas sp. strain A28. Appl. Environ. Microbiol. 66: 4334-4339   DOI   ScienceOn
12 Kim, J.-D.. and C.-G. Lee. 2006. Differential respanses of two freshwater cyanobacteria, Anabaena variabilis and Nostoc commune, to sulfanylurea herbicide bensulfuron-methyl. J. Microbiol. Biotechnol. 16: 52-56   과학기술학회마을
13 Choi, H. J., B. H. Kim, J. D. Kim, and M. S. Han. 2005. Streptomyces neyagawaensis as a control for the hazardous biomass of Microcystis aeruginosa (Cyanobacteria) in eutrophic freshwaters. Biol. Control 33: 335-343   DOI   ScienceOn
14 Sakata, T., Y. Fujita, and H. Yasumoto. 1991. Plaque formation by algicidal Saprospira sp. an a lawn of Chaetoceros ceratosporum. Nippon Suisan Gakkaishi 57: 1147-1152   DOI
15 Gonzalez, J. M., W. B. Whitman, R. E. Hodson, and M. A. Moran. 1996. Identifying numerically abundant culturable bacteria from complex communities: An example from a lignin enrichment culture. Appl. Environ. Microbiol. 62: 4433-4440
16 Merril, C. R., M. Harrinton, and V. Alley. 1984. A photodevelopment silver stain far the rapid visualizatian of proteins separated an polyacrylamide gels. Electrophoresis 5: 289-297   DOI
17 Sestelo, A. B. F., M. Paza, and T. G. Villa. 2004. ${\beta}-Glucosidase$ activity in a Lactobacillus plantarum wine strain. World J. Microbiol. Biotechnol. 20: 633-637   DOI
18 Somville, M. 1984. Measurement and study of substrate specificity of exoglucosidase activity in entrophic water. Appl. Environ. Micriobiol. 48: 1181-1185
19 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254   DOI   ScienceOn
20 Laemmli, U. K. 1970. Cleavage of structural proteins during assembly of the head of bacteriaphage T4. Nature 227: 680-685   DOI   ScienceOn
21 Yamamoto, Y., T. Kouchiwa, Y. Hodoki, K. Hotta, H. Uchida, and K.-I. Harada. 1998. Distribution and identification of actinomycetes lysing cyanobacteria in eutrophic lake. J. Appl. Phycol. 10: 391-397   DOI   ScienceOn
22 Yang, L., Z. S. Ning, C. Z. Shi, Z. Y. Chang, and L. Y. Huan 2004. Purification and characterization of an isoflavone-conjugates-hydrolyzing beta-glucosidase from endophytic bacterium. J. Agric. Food Chem. 52: 1940-1944   DOI   ScienceOn
23 Nakkharat, P. and D. Haltrich. 2006. Purificatian and characterisatian of an intracellular enzyme with beta-glucasidase and beta-galactosidase activity from the thermaphilic fungus Talaromyces thermophilus CBS 236.58. J. Biotechnol. 123:304-313   DOI   ScienceOn
24 Lucas, R., A. Robles, G. A. de Cienfuegos, and A. Galvez. 2000. ${\beta}-Glucosidase$ from Chalara paradoxa, CH32:Purification and properties. J. Agric. Food Chem. 48: 3698-3703   DOI   ScienceOn
25 Elisashvili, V. I., T. S. Khardziani, N. D. Tsiklauri, and E. T. Kachlishvili. 1999. Cellulase and xylanase activities in higher basidiomycetes. Biochemistry (Moscow) 64: 718-722
26 Harchand, R. K. and S. Singh. 1997. Characterization of cellulase complex of Streptomyces albaduncus. J. Basic Microbiol. 37: 93-103   DOI   ScienceOn
27 Riccio, P., R. Rassana, M. Vinella, P. Damizio, F. Zito, F. Sansevrino, A. D'Elia, and I. Rosi. 1999. Extraction and immobilization in one step of two beta-glucosidases released from a yeast strain of Debaryomyces hansenii. Enzyme Microb. Technol. 24: 123-129   DOI   ScienceOn
28 Somogyi, M. 1952. Notes on sugar determination. J. Biol. Chem. 159: 19
29 Zuniga, M., M. D. Miralles, and G. Perez-Martinez. 2002. The product of arcR, the sixth gene of the arc operon of Lactobacillus sakei, is essential for expression of the arginine deiminase pathway. Appl. Environ. Microbiol. 68: 6051-6058   DOI   ScienceOn
30 Hyun, H. H. and J. G. Zeikus. 1985. Regulation and genetic enhancement of beta-amylase production in Clostridium thermosulfurogenes. J. Bacteriol. 164: 162-1170
31 Skory, C. D., S. N. Freer, and R. J. Bathast. 1996. Properties of an intracellularbeta-glucosidase purified from the cellabiose-fermenting yeast Canadida wickerhamii. Appl. Microbiol. Biotechnol. 46: 353-359