• Title/Summary/Keyword: $\b{saw\wire}$

Search Result 4, Processing Time 0.02 seconds

Effects of Tensile Properties and Microstructure on Abrasive Wear for Ingot-Slicing Saw Wire (잉곳 슬라이싱용 Saw Wire의 연삭마모에 미치는 인장특성과 미세조직의 영향)

  • Hwang, Bin;Kim, Dong-Yong;Kim, Hoi-Bong;Lim, Seung-Ho;Im, Jae-Duk;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.334-340
    • /
    • 2011
  • Saw wires have been widely used in industries to slice silicon (Si) ingots into thin wafers for semiconductor fabrication. This study investigated the microstructural and mechanical properties, such as abrasive wear and tensile properties, of a saw wire sample of 0.84 wt.% carbon steel with a 120 ${\mu}M$ diameter. The samples were subjected to heat treatment at different linear velocities of the wire during the patenting process and two different wear tests were performed, 2-body abrasive wear (grinding) and 3-body abrasive wear (rolling wear) tests. With an increasing linear velocity of the wire, the tensile strength and microhardness of the samples increased, whereas the interlamellar spacing in a pearlite structure decreased. The wear properties from the grinding and rolling wear tests exhibited an opposite tendency. The weight loss resulting from grinding was mainly affected by the tensile strength and microhardness, while the diameter loss obtained from rolling wear was affected by elongation or ductility of the samples. This result demonstrates that the wear mechanism in the 3-body wear test is much different from that for the 2-body abrasive wear test. The ultra-high tensile strength of the saw wire produced by the drawing process was attributed to the pearlite microstructure with very small interlamellar spacing as well as the high density of dislocation.

Design and Fabrication of EMAT for Excitation of SAW (SAW 여기를 위한 EMAT의 설계 및 제작에 관한 연구)

  • Kim, Heung-Ki;Lee, Jae-Seung;Jun, Kye-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.9 no.3
    • /
    • pp.24-30
    • /
    • 1990
  • In this paper, meander line type EMAT(Electro-Magnetic Acoustic Transducer) has been designed and fabricated with effective properties for detecting flaw existing within one wavelength in depth, and its characteristics have been analyzed. For the purpose of getting effective dynamic and static magnetic intensity, the coil has been arrayed using wire with interval of 0.75 mm and width of 0.65 mm and permanent magnets with 1500 Gauss have been constructed respectively. The center frequency and fractional bandwidth of the fabricated EMAT was 2 MHz and 36% respectively and its impulse response has been measured by non-contacting technique(the distance between the conducting media and the coil was 0.15mm). In the measuring results, it has been shown that Insertion Loss(IL) was 45.46dB and it was good agreement with theoretical result.

  • PDF

Effect of Surfactant in Electroless Ni-B Plating for Coating on the Diamond Powder (다이아몬드 분말상에 무전해 Ni-B 도금을 위한 계면활성제의 영향)

  • Yang, Changyol;Yu, Si-Young;Moon, Hwan-Gyun;Lee, Jung-Ho;Yoo, Bongyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.3
    • /
    • pp.177-182
    • /
    • 2017
  • The properties of electroless Ni-B thin film on diamond powder with different parameters (temperature, pH, surfactant etc.) were studied. The surface morphology, structure and composition distribution of the Ni-B film were observed by field effect scanning electron microscope (FE-SEM), energy-dispersive spectrometer (EDS), X-ray diffraction (XRD) and Auger electron spectroscopy (AES). The growth rate of Ni-B film was increased with increase of bath temperature. The B content in Ni-B film was reduced with increase of bath pH. As a result the structure of Ni-B film was changed from amorphous to crystalline structure. The PVP in solution plays multi-functional roles as a dispersant and a stabilizer. The Ni-B film deposited with adding 0.1 mM-PVP was strongly introduced an amorphous structure with higher B content (25 at.%). Also the crystallite size of Ni-B film was reduced from 12.7 nm to 5.4 nm.