• Title/Summary/Keyword: $(Mo_{1/2}W_{1/2})Si_2$

Search Result 55, Processing Time 0.029 seconds

Failure Analysis and Accelerated Life Test of MoxW1-xSi2 Haters Fabricated by SHS process (SHS 공정으로 제조된 MoxW1-xSi2 발열체의 가속수명시험과 고장분석)

  • Lee, Dong-Won;Lee, Sang-Hun;Kim, Yong-Nam;Lee, Heesoo;Lee, Sung-Chul;Koo, Sang-Mo;Oh, Jong-Min
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.252-255
    • /
    • 2017
  • $Mo_xW_{1-x}Si_2$ heaters were fabricated by self-propagating high-temperature synthesis (SHS) process and post sintering process. To validate the reliability of the $Mo_xW_{1-x}Si_2$ heaters, the accelerated life test (ALT) was conducted, and then lifetime to $Mo_xW_{1-x}Si_2$ heaters was estimated by using Minitab programs. Also, the failure analysis of $Mo_xW_{1-x}Si_2$ heaters after ALT was performed through electrical and structural properties. As the results, it was confirmed that the dominant failure mode of $Mo_xW_{1-x}Si_2$ heaters is the crack formation in heaters and the delamination of protective $SiO_2$ layers.

Oxidation behavior of (Mo1-xWx)Si2 high-temperature heating elements (초고온용 발열체 (Mo1-xWx)Si2의 산화거동에 대한 연구)

  • Lee, Sung-Chul;Myung, Jae-ha;Kim, Yong-Nam;Jeon, Minseok;Lee, Dong-won;Oh, Jong-Min;Kim, Bae-Yeon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.5
    • /
    • pp.200-207
    • /
    • 2020
  • MoSi2, (Mo1/2W1/2)Si2, and WSi2 powders were synthesized by self-propagating high-temperature synthesis (SHS) method. The synthesized powders were heat-treated at 500, 1,000, 1,200, 1,300, 1,400, 1,500 and 1,600℃ in ambient atmosphere. Oxidation of Mo-W silicide powder was found at low temperature of 500℃. XRD structure analysis and DTA/TG data showed that MoO3 was formed with 500℃ heat treatment for 1 hour, and that it was α-cristobalite phase that was formed with 1200℃ heat treatment, not α-quartz phase which is commonly found and stable at room temperature. Existence of W accelerated decomposition at both low and high temperature. Fully sintered MoSi2 and (Mo1/2W1/2)Si2 specimen did not show decomposition or weight loss by oxidation, with 1 hour heat treatment at either low or high temperature. Notably, it was difficult to sinter WSi2 because of oxidation reaction at low temperature.

Degradation Mechanism of MoxW1-xSi2 Heating Elements Fabricated by SHS Process (SHS 공정에 의해 제조된 MoxW1-xSi2 발열체의 열화메커니즘)

  • Lee, Dong-Won;Lee, Sang-Hun;Kim, Yong-Nam;Lee, Sung-Chul;Koo, Sang-Mo;Oh, Jong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.10
    • /
    • pp.631-636
    • /
    • 2017
  • The degradation mechanism of $Mo_xW_{1-x}Si_2$ ultrahigh-temperature heating elements fabricated by self-propagating high-temperature synthesiswas investigated. The $Mo_xW_{1-x}Si_2$ specimens (with and without post-annealing) were subjected to ADTs (accelerated degradation tests) at temperatures up to $1,700^{\circ}C$ at heating rates of 3, 4, 5, 7, and $14^{\circ}C/min$. The surface loads of all the specimen heaters were increased with the increase in the target temperature. For the $Mo_xW_{1-x}Si_2$ specimens without annealing, many pores and secondary-phase particles were observed in the microstructure; the surface load increased to $23.9W/cm^2$ at $1,700^{\circ}C$, while the bending strength drastically reduced to 242 MPa. In contrast, the $Mo_xW_{1-x}Si_2$ specimens after post-annealing retained $single-Mo_xW_{1-x}Si_2$ phases and showed superior durability after the ADT. Consequently, it is thought that the formation of microcracks and coarse secondary phases during the ADT are the main causes for the degraded performance of the $Mo_xW_{1-x}Si_2$ heating elements without post-annealing.

A Study on Synthesis of (Mo.W)$\textrm{Si}_2$ Composites (이규화몰리.텅스텐 복합재료의 합성에 관한 연구)

  • Jang, Dae-Gyu;Abbaschian, R.
    • Korean Journal of Materials Research
    • /
    • v.9 no.1
    • /
    • pp.92-98
    • /
    • 1999
  • (Mo.W)Si$_2$ composites were fabricated by vacuum hot-pressing elemental Mo, W and Si powders at various temperatures. Elemental Mo, W and Si powders were alloyed in the proper proportions to form solid solutions. The microstructure and properties of these materials was characterized by using x-ray diffraction, optical microscopy, energy dispersive x-ray spectroscopy and Vicker's technique. It was found that tungsten was mainly substituted for Mo atoms, and made a completed solid solution of (Mo.W)Si$_2$ over 1$600^{\circ}C$. The lattice parameters and Vickers hardness increased largely with increasing reaction temperature by the most soluble elements, due to the solid-solution hardening.

  • PDF

Synthesis and Properties of In-situ $MoSi_2$/W Composites ($MoSi_2$/W 복합재료의 합성과 성질에 관한 연구)

  • Jang, Dae-Kyu;Abbaschian, R.
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.938-944
    • /
    • 1998
  • $MoSi_2$/W composites were fabricated by vacuum hot press at $1600^{\circ}C$ under 30MPa for 3 hrs. The effects of the amount of tungsten in the composites was explained in terms of the microstructure and mechanical properties. Although tungsten was mainly substituted to Mo atoms forming a complete solid solution of (Mo.W).Si, (x= 1, 5, y=2, 3). the grain size of composites became smaller with the increase of tungsten added. Vickers hardness was increased with the increase of tungsten content due to the solid-solution hardening. On the other hand, toughness of composites decreased sharply by increasing the amount of tungsten. Optimum tungsten amount was determined to be a 10 vol% of composite. Indentation fracture toughness was calculated to be 4.5MPa\sqrt{m}$ in this composites, compared with $2.7MPa\sqrt{m}$ in pure $MoSi_2$.

  • PDF

Neutron Diffraction Analysis of Tungsten-Molybdenum-Disilicide Powders Formed by Self-propagating High Temperature Synthesis

  • Choi, Y.;Kim, Y.S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1325-1326
    • /
    • 2006
  • Tungsten-molydiside $W_xMo_{1-x}Si_2$ was synthesized by self-propagating high temperature synthesis (SHS). The SHS product with the initial composition of (0.5Mo+0.5W+2Si) contains 23.9% $MoSi_2$, 40.89% $WSi_2$ with remaining 9.11% Mo, 9.16% Si and 16.94%W. Lattice parameters of the $MoSi_2$ and $WSi_2$ determined by Rietvelt analysis were a=0.3206 nm, c=0.7841 nm and a=0.3212 nm, c=0.7822 nm, respectively.

  • PDF

Magnetic Properties in Alternating Magnetic Field for the Sintered Ee-l7Cr-2M(M=Si, Nb, Mo) Alloys (Fe-l7Cr-2M(M=Si, Nb, Mo)합금 분말 소결체의 교류 자기 특성)

  • 김정곤;김택기;오용수
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.6
    • /
    • pp.269-273
    • /
    • 2000
  • Fe-l7Cr-2M(M=Si, Nb, Mo) alloy powder was prepared by plasma electrode rotating atomizer and than the alloy powder was formed and sintered. The particle shape of the Fe-l7Cr-2M(M=Si, Nb, Mo) alloy power is spherical. The saturation magnetization of the sintered Fe-17Cr-2Mo and Fe-l7Cr-2Nb alloy are 155 emu/g. The saturation magnetization of the sintered Fe-l7Cr-2Si alloy is less than that of the sintered Fe-l7Cr-2Mo and Fe-l7Cr-2Nb alloy. The amplitude relative permeability of the sintered Fe-l7Cr-2M(M=Si, Nb, Mo) alloy has the maximum value in the range of 3∼5 Oe applied field at forming pressure 12 ton/cm$^2$, sintering temperature 1200$^{\circ}C$, and frequency 1 kHz. Power loss of the sintered Fe-l7Cr-2Nb alloy is 40 mW/cc at applied field, H$\sub$a/=5 Oe, and frequency, f=1 kHz. The power loss of the sintered Fe-l7Cr-2Nb alloy is a half of that of the sintered Fe-l7Cr-2Si and Fe-l7Cr-2Mo alloy.

  • PDF

Fabrication of $\textrm{MoSi}_2$ Heating Elements (이규화몰리브덴 고온발열체의 제조에 관한 연구)

  • Kim, Won-Baek;Sim, Geon-Ju;Jang, Dae-Gyu;Seo, Chang-Yeol
    • Korean Journal of Materials Research
    • /
    • v.7 no.9
    • /
    • pp.763-771
    • /
    • 1997
  • 이규화몰리브덴 고온발열체의 제조공정을 개발하였다. 원료분말은 상용 MoSi$_{2}$분말이었으며 Bentonite, Si$_{3}$N$_{4}$, B, ThO$_{2}$를 각각 가소제와 첨가제로 사용하였다. 이들은 진공압출, 소결, 단자부 기계가공, U자형 성형, 용접 등의 과정을 거쳐 U자형 발열체로 제조되었다. 사용제품의 분석결과 최근 사용온도가 크게 증가된 것으로 알려진 190$0^{\circ}C$용 발열체는 다량(33wt%)의 W이 Mo을 치환하고 있는 것으로 나타났다. 발열체의 전기비저항은 겉보기 밀도가 증가함에 따라 급격하게 감소하는 경향을 보였으며 첨가물들의 영향은 미미하였다. 1400-1$600^{\circ}C$에서 용접한 경우 용접면에서의 전기비저항은 비용접부보다 낮았으며 용접온도가 증사함에 따라 감소하였다. 발열시험결과 제조된 발열체는 표면온도가 1$700^{\circ}C$이하에서는 문제가 없었으며 175$0^{\circ}C$ 이상의 온도에서는 원형의 융기가 표면에 발생하면서 급속하게 파괴되었다. 이 융기는 X-선 회절분석결과 SiO로 밝혀졌으며 따라서 발열체의 파괴는 MoSi$_{2}$/SiO$_{2}$계면에서의 Si(in MoSi$_{2}$) + SiO$_{2}$=2SiO(g)반응에 으해 일어나는 것으로 판단된다.

  • PDF

Stress and Relective Index of ${SiN}_{x}$ and ${SiN}_{x}/\textrm{SiO}_{x}/{SiN}_{x}$ Films as Membranes of Micro Gas Sensor (Micro Gas Sensor의 Membrane용 ${SiN}_{x}$막과 ${SiN}_{x}/\textrm{SiO}_{x}/{SiN}_{x}$막의 응력과 굴절율)

  • Lee, Jae-Seok;Sin, Seong-Mo;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.7 no.2
    • /
    • pp.102-106
    • /
    • 1997
  • Micro gas sensors including thin film catal) tic type require stress-free memhrancs for etch stop of Si anisotropic etching and sublayer of sensing elements hecause stress is one of the main factors affecting breakdown of thin membranes. This paper reports the effects of deposition conditions on stress and refractive index of $SiN_{x}/SiO_{x}/(NON)$ films deposited by low pressure c11ernic;rl vapor deposition(L, t'CVI)) 2nd reactve sputtering. In the case of I.PCVI1, the stresses of $SiN_{x}$ and NON films arc $7.6{\times}10^{8}dyne/cm^2$ and $3.3{\times}10^{8}dyne/cm^2$, respectibely, and the refractive indices are 3.05 and 152, respectively. In the cxse oi the sputtered SiN, , compressi\e stress decreased in magnitude and then turned to tensility as increasing proc, ess pressure by lmtorr to 30mtorr and cicreasmg applied power density by $2.74W/cm^2$ to $1.10W/cm^2$. The hest value of film stress obt;~ined under condition of lOmtorr and $1.37W/cm^2$ in this' experiment was $1.2{\times}10^{9}dyne/cm^2$ cnnipressive. The refr~ict~ve index decreased from 2 05 to 1 89 as decreasing applied power density by lnitorr to 3Orntorr and increasing process pressure hy $2.74W/cm^2$ to $1.10W/cm^2$. Stresses of films deposited by both LPCVL) and sputtering decreased as incre;lsing temperature and showed plastic behavior as decreasing temperature.

  • PDF

Performance Improvement of Current Memory for Low Power Wireless Communication MODEM (저전력 무선통신 모뎀 구현용 전류기억소자 성능개선)

  • Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.2
    • /
    • pp.79-85
    • /
    • 2008
  • It is important to consider the life of battery and low power operation for various wireless communications. Thus, Analog current-mode signal processing with SI circuit has been taken notice of in designing the LSI for wireless communications. However, in current mode signal processsing, current memory circuit has a problem called clock-feedthrough. In this paper, we examine the connection of CMOS switch that is the common solution of clock-feedthrough and calculate the relation of width between CMOS switch for design methodology for improvement of current memory. As a result of simulation, when the width of memory MOS is 20um, ratio of input current and bias current is 0.3, the width relation in CMOS switch is obtained with $W_{Mp}=5.62W_{Mn}+1.6$, for the nMOS width of 2~6um in CMOS switch. And from the same simulation condition, it is obtained with $W_{Mp}=2.05W_{Mn}+23$ for the nMOS width of 6~10um in CMOS switch. Then the defined width relation of MOS transistor will be useful guidance in design for improvement of current memory.

  • PDF