• Title/Summary/Keyword: $({Al_2}{O_3}-SiC)$- SiC

Search Result 1,194, Processing Time 0.033 seconds

고온가압소결한 SiCf/SiC 복합체에서 보호층으로써의 SiC 층이 기계적 물성에 미치는 영향

  • Jeong, Myeong-Hun;Kim, Dae-Jong;Kim, Won-Ju;Yun, Sun-Gil;Park, Ji-Yeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.105.1-105.1
    • /
    • 2012
  • 고온가압소결으로 제조된 SiCf/SiC 복합체는 부식과 침식에 강하고 우수한 열적 성질과 고온에서의 높은 기계적 강도를 유지하는 장점을 가진 복합체다. 복합체의 파괴인성은 섬유와 기지 사이에 존재하는 열분해탄소 (PyC) 계면층에 의해 큰 영향을 받는데, 고온가압소결중 첨가되는 소결조제 ($Y_2O_3$, MgO, $Al_2O_3$)와 반응하여 계면이 손상되어 복합체의 기계적 특성치가 낮아지는 결과를 보였다. 본 연구에서는 계면의 손상을 보호하고자 PyC 계면상 위에 SiC 층을 증착하였는데 계면층과 SiC 층의 증착은 화학기상 증착법(CVD)을, 기지채움 공정은 전기영동법(EPD)과 고온가압소결방법(Hot Pressing)을 이용하여 복합체를 제조하였다. Tyranno-SA 섬유에 소스가스인 메탄을 열분해 하여 200nm 두께로 PyC 계면상을 증착하고, 두께를 달리하여 보호층으로써의 SiC 층을 single 과 double layer로 증착하였다. SiC 나노분말과 소결 첨가제인 $Y_2O_3$, $Al_2O_3$, MgO를 첨가한 슬러리를 전기영동법(EPD)을 이용하여 섬유내부에 슬러리를 함침시켰고, 이러한 프리폼을 $1750^{\circ}C$/20MPa의 조건으로 고온 가압소결 하여 $SiC_f$/SiC 복합체를 제조하였다. 이렇게 single layer와 double layer로 제조된 $SiC_f$/SiC 복합체에 대해 밀도와 미세구조를 관찰하였고, 기계적 특성을 비교하여 보호층으로써의 SiC 증착효과를 고찰하고자 하였다.

  • PDF

Effect of $Al_2O_3$ pre-layers formed using protective Si-oxide layer on the growth of ultra thin ${\gamma}-Al_2O_3$ epitaxial layer (보호용 실리콘 산화막을 이용하여 제조된 $Al_2O_3$ 예비층이 초박막 ${\gamma}-Al_2O_3$ 에피텍시의 성장에 미치는 영향)

  • Jung, Young-Chul;Jun, Bon-Keun;Ishida, Makoto
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.389-395
    • /
    • 2000
  • In this paper, we propose the formation of an $Al_2O_3$ pre-layer using a protective Si-oxide layer and Al layer. Deposition of a thin film layer of aluminum onto a Si surface covered with a thin Si-oxide layer and annealing at $800^{\circ}C$ led to the growth of epitaxial $Al_2O_3$ layer on Si(111). And ${\gamma}-Al_2O_3$ layer was grown on the $Al_2O_3$ per-layer. Etching of the Si substrate by $N_2O$ gas could be avoided in the initial growth stage by the $Al_2O_3$ pre-layer. It was confirmed that the $Al_2O_3$ pre-layer was effective in improving the surface morphology of the very thin ${\gamma}-Al_2O_3$ films.

  • PDF

Joining Behavior of YSZ Ceramics to Al2O3-ZrO2-SiO2-R2O and Al2O2-ZrO2-SiO2-La2O3-R2O Glass Systems (Al2O3-ZrO2-SiO2-R2O와 Al2O3-ZrO2-SiO2-La2O3-R2O계 유리와 부분안정화 지르코니아간의 접합거동)

  • Choi, Jinsam;Bae, Won Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.1
    • /
    • pp.19-22
    • /
    • 2015
  • The joining behavior of YSZ ceramics to the glasses used in the $9Al_2O_3-24ZrO_2-51SiO_2-16R_2O$ and $9Al_2O_3-24ZrO_2-51SiO_2-7La_2O_3-9R_2O$ (wt%) glass systems was investigated. The glass transition and softening temperatures were determined to be $430^{\circ}C$ and $760^{\circ}C$, respectively. The behavior of the contact angle was inversely proportional to an increase in the temperature. The Zr element in YSZ acted as a nucleation agent and contributed to the bonding behavior at the interface.

Properties of SiC-Ti $B_2$ Electroconductive Ceramic Composites by Pressureless Annealing (무가압 Annealing한 $SiC-TiB_2$전도성 세라믹 복합체의 특성)

  • 신용덕;주진영;최광수;오상수;윤양웅
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.2
    • /
    • pp.80-84
    • /
    • 2003
  • The mechanical and electrical properties of the hot-pressed and pressureless annealed SiC-Ti $B_2$electroconductive ceramic composites were investigated as functions of the liquid additives of $Al_2$ $O_3$+ $Y_2$ $O_3$. The result of phase analysis for the SiC-Ti $B_2$ composites by XRD revealed $\alpha$-SiC(6H), Ti $B_2$, and YAG(A $l_{5}$ $Y_3$ $O_{12}$ ) crystal phase. The relative density of SiC-Ti $B_2$ composites was increased with increased $Al_2$ $O_3$+ $Y_2$ $O_3$ contents. The fracture toughness showed the highest value of 6.04 Mpa $m^{\frac{1}{2}}$ for composites added with l2wt% A1$_2$ $O_3$+ $Y_2$ $O_3$ additives at room temperature. The electrical resistivity showed the lowest value of 6.2$\times$10$^{-3}$ $\Omega$ㆍcm for composite added with l6wt% $Al_2$ $O_3$+ $Y_2$ $O_3$ additives at room temperature. The electrical resistivity of the SiC-Ti $B_2$ composites was all positive temperature cofficient resistance(PTCR) in the temperature ranges from $25^{\circ}C$ to $700^{\circ}C$.

Fabrication of Textured $Al_2O_3-Mullite-SiC$ Nano-composite by Slip Casting in a High Magnetic Field and Reaction Sintering

  • Sakka, Yoshio;Saito, Sho;Honda, Atsushi;Suzuki, Tohru S.;Moriyoshi, Yusuke
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.327-328
    • /
    • 2006
  • We have demonstrated that textured $Al_2O_3-mullite-SiC$ nanocomposites can be fabricated by slip casting followed by partial oxidation - reaction sintering of mixed suspensions of $Al_2O_3$ and SiC powders in a high magnetic field. The sintered density was changed by the degree of oxidation at 1200C and 1300C. The degree of orientation of alumina in the nanocomposite was examined on the basis of the X-ray diffraction patterns and scanning electron micrographs. It is confirmed that alumina-oriented nanocomposites were fabricated. The three-point bending strength at room temperature was observed for the nanocomposites.

  • PDF

Fabrication of Textured $Al_2O_3-Mullite-SiC$ Nano-composite by Slip Casting in a High Magnetic Field and Reaction Sintering

  • Sakka, Yoshio;Saito, Sho;Honda, Atsushi;Suzuki, Tohru S.;Moriyoshi, Yusuke
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.455-456
    • /
    • 2006
  • We have demonstrated that textured $Al_2O_3-mullite-SiC$ nanocomposites can be fabricated by slip casting followed by partial oxidation. reaction sintering of mixed suspensions of $Al_2O_3$ and SiC powders in a high magnetic field. The sintered density was changed by the degree of oxidation at 1200C and 1300C. The degree of orientation of alumina in the nanocomposite was examined on the basis of the X-ray diffraction patterns and scanning electron micrographs. It is confirmed that aluminaoriented nanocomposites were fabricated. The three-point bending strength at room temperature was observed for the nanocomposites.

  • PDF

Characteristics on Silicon Oxynitride Stack Layer of ALD-Al2O3 Passivation Layer for c-Si Solar Cell (결정질 실리콘 태양전지 적용을 위한 ALD-Al2O3 패시베이션 막의 산화질화막 적층 특성)

  • Cho, Kuk-Hyun;Cho, Young Joon;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.25 no.5
    • /
    • pp.233-237
    • /
    • 2015
  • Silicon oxynitride that can be deposited two times faster than general SiNx:H layer was applied to fabricate the passivation protection layer of atomic layer deposition (ALD) $Al_2O_3$. The protection layer is deposited by plasma-enhanced chemical vapor deposition to protect $Al_2O_3$ passivation layer from a high temperature metallization process for contact firing in screen-printed silicon solar cell. In this study, we studied passivation performance of ALD $Al_2O_3$ film as functions of process temperature and RF plasma effect in plasma-enhanced chemical vapor deposition system. $Al_2O_3$/SiON stacks coated at $400^{\circ}C$ showed higher lifetime values in the as-stacked state. In contrast, a high quality $Al_2O_3$/SiON stack was obtained with a plasma power of 400 W and a capping-deposition temperature of $200^{\circ}C$ after the firing process. The best lifetime was achieved with stack films fired at $850^{\circ}C$. These results demonstrated the potential of the $Al_2O_3/SiON$ passivated layer for crystalline silicon solar cells.

High Temperature Tribological Behaviour of Particulate Composites in the System SiC-TiC-TiB2 during Dry Oscillating Sliding

  • Wasche, Rolf;Klaffke, Dieter
    • The Korean Journal of Ceramics
    • /
    • v.5 no.2
    • /
    • pp.155-161
    • /
    • 1999
  • The tribological behaviour of monolithic SiC as well as SiC-TiC and SiC-TiC-$TiB_2$ particulate composite materials has been investigated in unlubricated oscillating sliding tests against $Al_2O_3$ at temperature in the range from room temperature up to $600^{\circ}C$. At temperatures below $600^{\circ}C$ the wear rate of the systems with the composite materials was up to 20 times lower than the wear of the $Al_2O_3$/SiC system and was dominated by the oxidation of the titanium phases. At $600^{\circ}C$ the oxidation rate of the TiC and -TEX>$TiB_2$ grains becomes predominant resulting in an enhanced wear rate of the composite rate of the TiC and TiB2 grains becomes predominant resulting in an enhanced wear rate of the composite materials. The coefficient of friction shows similar values for all materials of investigation, increasing from 0.25…0.3 at room temperature to 0.7…0.8 $600^{\circ}C$. The wear of the $Al_2O_3$/SiC system is mainly abrasive at temperatures above room temperature and is characterised by an enhanced wear of the alumina ball at $600^{\circ}C$.

  • PDF

Nitridation Behavior of Kaolin with Reduced Alumina Content Obtained by Acid Treatment (산처리에 의하여 알루미나 함량을 줄인 카올린의 질화거동)

  • 배원태;정원도;조철구
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.5
    • /
    • pp.347-356
    • /
    • 1992
  • Various kaolin samples with different alumina content were prepared from calcined admixture of kaolin and ammonium sulfate by varying the treatment time in sulfuric acid. Samples were nitridated under N2 or N2-H2 atmosphere with changing the amount of added carbon, the reaction time and temperature. As the alumina content lowered, the size of kaolin particles decreased and the specific surface area increased. XRD analysis indicated that ${\alpha}$-quartz remained by decomposition of halloysite and meta-halloysite. Experimental results of nitridation behavior are summerized as follows; 1) Nitridation under N2 atmosphere. With the increase of C/SiO2 ratio and with the decrease of Al2O3 content, disappearance of XRD pattern peaks of mullite, ${\alpha}$-quartz and ${\alpha}$-Al2O3 were accelerated at 1300$^{\circ}C$. SiC was the main phase in the reaction product of acid-treated kaolin samples nitridated at 1300$^{\circ}C$ for 10 hours regardless of C/SiO2 ratio. But the XRD peak intensities of ${\beta}$-Si3N4, ${\beta}$-sialon and SiC did not show much difference when untreated raw kaolin was fired at the same condition. When the ratio of C/SiO2 was 3.5, ${\beta}$-sialon and ${\beta}$-Si3N4 existed in the reaction product of about 22% alumina containing kaolin sample fired at 1350$^{\circ}C$ for 7 hours. Only ${\beta}$-sialon existed in the same sample fired at 1400$^{\circ}C$ for 10 hours. ${\beta}$-sialon was obtained from all of the acid-treated kaolin samples fired at 1400$^{\circ}C$ for 40 hours, but AlN and SiC remained in the untreated kaolin sample. Z value of the ${\beta}$-sialon obtained from the 22% alumina containing kaolin sample fired at 1400$^{\circ}C$ for 40 hours was about 1.3(XRD) and 1.5(EDS). 2) Nitridation under 80N2+2OH2 mixed gas atmosphere with the C/SiO2 ratio of 1 Mullite was not found, but ${\alpha}$-Si3N4, and ${\beta}$-sialon were present in the reaction product of about 22% alumina containing kaolin sample fired at 1300$^{\circ}C$ for 10 hours. When untreated kaolin sample was nitridated at the same condition, mullite remained. AlN and SiC were not found in the reaction product of about 22% alumina containing kaolin sample fired at 1350$^{\circ}C$ for 5 hours. On the other hand, AlN and SiC remained in the product of untreated kaolin fired at the same condition.

  • PDF

The Microstructure Control of SiC Ceramics Containing Porcelain Scherben (자기파를 함유한 SiCwlf 세라믹스의 미세구조 제어)

  • 이성희
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.5
    • /
    • pp.626-634
    • /
    • 1995
  • The SiC-porcelain powder mixtures containing 51.9wt% SiC are produced as by-products from the surface abrasion process of porcelain cores. This raw powders were used as starting materials for the synthesis of SiC containing ceramics. The specimen, which was fired at 135$0^{\circ}C$ from raw powders, had SiC, $Al_{2}O_{3}$, , cristobalite, mullite as crystalline phases, and the fractured microstructure showed dispersed SiC crystalline particles almost wetted with glassy matrix and spherical pores. Although the oxidation of SiC containing powder compacts wetted with glassy matrix and spherical pores. Although the oxidation of SiC containing powder compacts started at the range of 600~80$0^{\circ}C$ form the analysis of weight gain, the presence of $SiO_{2}$ crystallien phase and cristobalite was confirmed at 100$0^{\circ}C$ by XRD analysis. Mullitization of specimens was accelerated by preheating before the final firing. The specimen sintered at 135$0^{\circ}C$ after 100$0^{\circ}C$ preheating consisted of SiC, cristobalite, mullite as crystalline phases, and revealed 2.24g/$cm^{3}$ bulk density, 11.73% water adsorption, porous microstructure with small amount of glassy phase. SiC contents of specimens, which was 51.9 wt% in the raw powders, reduced to 37~22 wt% after firing at 135$0^{\circ}C$ depending on the preheating condition.

  • PDF