• Title/Summary/Keyword: $%Na_2O$

Search Result 4,111, Processing Time 0.039 seconds

Effect of Rice Straw Heated in Water or 0.25N-NaClO$_2$ on the Nutrient Utilization of Diets in Chicks (증류수 혹은 0.25N NaClO$_2$에서 가열한 볏짚의 가금에서의 영양소이용성에 미치는 영향)

  • 고태송;김해수;김성규;라채영
    • Korean Journal of Poultry Science
    • /
    • v.12 no.1
    • /
    • pp.25-30
    • /
    • 1985
  • In order to observe an effect of the components of rice straw on the utilization of nutrient in chicks, the rice straw of 100g were digested in 800$m\ell$ of distilled water or 0.25N NaClO$_2$ at 135 C and in the pressure of 3.2kg/$\textrm{cm}^2$ by autoclave during 30, 60 and 120 minutes (water or NaClO$_2$-30, 60 and 120- RS). The contents of neutral detergent fiber(NDF), acid detergent fiber (ADF) and lignin were analysed in the washed and dried rice straw meal. Hatched single comb white Leghorn male chicks were fed with a commercial chick mash for the first 10 days and five kinds of experimetal diets for the next 8 days which contained 17.0% of wheat bran (basal), cellulose(cotton meal), nontreated RS, water-30-RS and NaClO$_2$ 30-RS, respectively. The water-30, 60 and 120-RS baa leased 9.7, 12.1 and 13.3% of dry matter, respectively, while NaClO$_2$-30-RS had similar contents of dry matter loss with those of water-30-RS, and NaClO$_2$-60 and 120-RS had tossed 1.5 times of dry matter comparing with those of water-60 and 120-RS, respectively. And the dry matter loss of the water-RS or NaClO$_2$-RS was mainly originated front the extractable cell contents and hemicellulose of the non-treated RS. Birds fed water-30-RS diets had higher body weight gain and lower feed conversion than those of birds fed non-treated and NaClO$_2$-30-RS diets during 8 days of experimental feeding. Also nitrogen balance and retention rate of birds fed water -30-RS was higher comparing with those of birds non-treated and NaClO$_2$-30-RS. And digestibility of crude fat had been shown a highering trend in birds water-30-RS. The rate of metabolizable energy (MEn) to gross energy (GE) of birds fed non-treated RS, water-30-RS and NaClO$_2$30-RS diets were 71.9, 72.9 and 70.4%, respectively, and energy intake per metaboic body size (kg 0.75) were reached to 307.3, 296.2 and 291.4 kcal per day, respectively. And daily protein retention per kg 0.75 were 1.647, 1.969 and 1.560g, respectively. Then 30.56kcal of MEn required for 1 g of protein retention in birds fed water-30-RS, which was lower thu 36.90 and 37.56 kcal of birds fed non-treated and NaClO$_2$-30- RS, respectively. The results seems to indicate that non-treated rice straw had a substance or characters which affect the energy unilization or protein retention of diets and which will be eliminated by boiling in water.

  • PDF

Correlation between Structures and Ionic Conductivities of $Na_2Ln_2Ti_3O_{10}$ (Ln=La, Nd, Sm, and Gd)

  • Park, Gil Eung;Byeon, Song Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.168-172
    • /
    • 1996
  • The variations of the structural detail of layered perovskite-type oxides, Na2Ln2Ti3O10 (Ln=La, Nd, Sm, Gd), have been refined by Rietveld analyses of their powder X-ray diffraction data. Although the c-axis strongly decreases from Ln=La to Nd, Sm, or Gd, the length of Na-O bond along the c-axis that is regarded as the sodium layer spacing is not dependent on the unit cell parameter. Such a behavior is explained by the fact that Na-O bond is in competition with Ti-O one of the perovskite slab. Increased covalency of this Ti-O bond by the lattice contraction leads to weakening of the attaching strength of Na ion. This picture is consistent with the experimental observation that Na ion conductivity of Na2Ln2Ti3O10 increases from Ln=La to Nd, Sm, or Gd despite strong contraction of the unit cell volume.

Determination of the Thermolelectric Properties of NaxCo2O4 by Controlling the Concentration of Na and Additive (NaxCo2O4의 열전특성에 미치는 Na 함량변화와 첨가제의 효과)

  • Choi, Soon-Mok;Jeong, Seong-Min;Seo, Won-Seon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.689-694
    • /
    • 2009
  • Layer-structured $Na_xCo_2O_4$ was synthesized from $Na_2CO_3\;and\;Co_3O_4$ powders. The chemical concentrations of Na and additive were controlled to enhance the thermoelectric properties over the temperature range from 400 K to 1,150 K. As a result, we obtained the maximum thermoelectric properties at a single phase region with Na content of x=1.5. When Na content was smaller than x=1.5, the thermoelectric properties was low due to formation of second phases of CoO and other oxides. Additionally, Mn was doped to improve thermoelectric properties by means of decreasing thermal conductivity. The results showed that the concentrations of both Na and Mn are all governing factors to determine the thermoelectric properties of $Na_xCo_2O_4$ system.

The effect of SiO2, Na2O, and CaO on the isokom temperatures in soda-lime glass (소다석회유리에서 SiO2, Na2O, CaO가 isokom 온도에 미치는 영향)

  • Kang, Seung Min;Kim, Chang-Sam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.1
    • /
    • pp.12-15
    • /
    • 2022
  • The effect of SiO2, Na2O and CaO on isokom temperatures in soda-lime glass is estimated by comparing calculated isokom temperatures using viscosity model proposed by Lakatos. The isokom temperatures at the viscosity of log η = 12.3, 10, 6.6 and 1 (Pa·s) are lowered by 6, 7, 10 and 24℃, respectively, by the substitution of SiO2 with Na2O by 1 mol%. Meanwhile, replacing 1 mol% of SiO2 with CaO raises the isokom temperatures by 3~4 and 2℃ at the viscosity of log η = 12.3 and 10 (Pa·s), respectively, but lowers the temperatures by 1 and 21℃ at the viscosity of log η = 6.6 and 1(Pa·s), respectively.

Sintering of $\alpha{\;}-{\;}Al_2O_3$ with NaOH (가성소다를 이용한 $\alpha{\;}-{\;}Al_2O_3$의 소결반응)

  • 김재용;이진수;서완주;박수길;엄명헌
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.1
    • /
    • pp.95-101
    • /
    • 2000
  • This study was investigated to the reaction of alumina sintering with alkaline. The soluble $NaAlO_2$ was made after the commercial ${\alpha}-Al_2O_3$ was calcinated with NaOH. The reaction of alumina was carried out to be based on the effects of calcination temperature, time, and the mixing ratio of ${\alpha}-Al_2O_3/NaOH$. The alumina was calcined over $500^{\circ}C$ with NaOH powder after it was sieved with 170/270 mesh. The calcined alumina with NaOH powder was dissolved into $25^{\circ}C$ distilled water and filtrated, and HCI was added to adapt pH 6.5~7.5. The residue was separated with vacuum pump for filtration after it was adapted to proper pH, and aluminum compound was precipitated with $Al(OH)_3$. The investigation was carried out with the variables; the calcination temperature($500-900^{\circ}C$), the calcination time (30~90 min), and the concentration of HCI when leaching(0.5~3.0N) respectively. In this investigation, the main product of ${\alpha}-Al_2O_3$ and NaOH was $NaAlO_2$ and the maximum conversion ratio was 91.4% under the optimum conditions as followed ; the ratio of NaOH/${\alpha}-Al_2O_3$ was 1.5 and the calcination conditions were $800^{\circ}C$ and 90 min.

  • PDF

Analysis of the Na Gettering in PSG/SiO2/Al-1%Si Multilevel Thin Films using XPS and SIMS (XPS와 SIMS를 이용한 PSG/SiO2/Al-1%Si 적층 박막내의 Na 게터링 분석)

  • Kim, Jin Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.467-471
    • /
    • 2016
  • In order to investigate the Na gettering, PSG/$SiO_2$/Al-1%Si multilevel thin films were fabricated. DC magnetron sputter techniques and APCVD (atmosphere pressure chemical vapor deposition) were utilized for the deposition of Al-1%Si thin films and PSG/$SiO_2$ passivations, respectively. Heat treatment was carried out at $300^{\circ}C$ for 5 h in air. SIMS (secondary ion mass spectrometry) depth profiling and XPS (X-ray Photoelectron Spectroscopy) analysis were used to determine the distribution and binding energies of Na, Al, Si, O, P and other elements throughout the PSG/$SiO_2$/Al-1%Si multilevel thin films. Na peaks were mainly observed at the the PSG/$SiO_2$ interface and at the $SiO_2$/Al-1%Si interfaces. Na impurity gettering in PSG/$SiO_2$/Al-1%Si multilevel thin films is considered to be caused by a segregation type of gettering. The chemical state of Si and O elements in PSG passivation appears to be $SiO_2$.

Oxygen Sites in Quaternary Ca-Na Aluminosilicate Classes : O-17 Solid-State NMR Study (사성분계 비정질 Ca-Na 알루미노규산염의 산소주변의 원자구조 : O-17 고상핵자기 공명분광학분석)

  • Sung, So-Young;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.347-353
    • /
    • 2006
  • The atomic-nano scale structures of multi-component aluminosilicate glasses have not been well understood in spite of its implications fur dynamics and generation of magma in the natural system due to lack of suitable spectroscopic and scattering experiments. Here, we report O-17 MAS and isotropic projection of 3QMAS NMR spectra for quaternary Na-Ca silicate glasses $[(CaO)_x(Na_2O)_{1-x}]\;(A1_2O_3)_{0.5}(SiO_2)_6,\;CNAS)$ at 14.1 Tesla where atomic configurations around bridging oxygen (Si-O-Si, Si-O-Al) and non bridging oxygen (Na-O-Si, Ca-O-Si, (Na, Ca)-O-Si) are partially resolved. With increasing Na content, the fraction of Na-O-Si increases while those for bridging oxygens remain constant. The Na/Ca ratio apparently affects the peak widths of bridging oxygen peaks (e.g., Si-O-Si)) and thus the topological entropy as well as chemical shifts of the bridging oxygen peaks, implying that both BOs and NBOs are strongly interacting with network modifying cations The effect of cation field strength on the degree of Al-avoidance was also discussed.

Comparisons of Inorganic Compounds between the Ginsengs, Keumsan, Chungnam and their Soils (충남 금산의 인삼 및 토양의 무기 원소 함량 비교)

  • Song, Suck-Hwan;You, Seon-Gyun;Kim, Ill-Chool
    • Korean Journal of Plant Resources
    • /
    • v.20 no.1
    • /
    • pp.12-21
    • /
    • 2007
  • Ginsengs (1,2 3 years) from the Keumsan are analysed for the inorganic compounds and compared with the their soils from the granite, phyllite and shale areas. In the soils, the granite areas show high $Al_2O_3\;and\;Na_2O$ contents while the phyllite areas have high $Fe_2O_3,\;MnO\;and\;MgO$ contents. Positive correlations are shown in the $Al_2O_3-K_2O\;and\;Fe_2O_3-MgO$ pairs while negative correlations are shown in the $SiO_2-CaO$ pair. In the ginsengs, the shale areas are high in the most of the elements, but low in the granite areas. Compared with same soils of different ages, Al, Na and Ti contents of the ginsengs are high in the all areas. The shale areas are mainly high in the upper parts while the granite areas are mainly high in the root parts. Regardless of the localities, Fe, Mn and Ca contents are high in the upper parts while Ti contents are high in the root parts with differences of several times. Relative ratios between field soils and ginsengs (field soil/ginseng) suggest that the ginsengs show high Ca contents with differences of several ten times whereas the soils have high Na, Fe, Ti and Al contents with differences of several times. Regardless of the localities, the ratios of the Al, Mn and Na are high in the 2 year relative to the 3 year. Overall ratios between field soils and ginsengs are mainly big in the 2 year area relative to the 3 year area. It suggests that contents of the 3 year ginsengs are more similar to those of their soils relative to the 2 year and the ginsengs may absorpt eligible element contents with increasing ages.

First-principles investigation of the monoclinic NaMnO2 cathode material for rechargeable Na-ion batteries

  • Zhang, Renhui;Lu, Zhibin;Yang, Yingchang;Shi, Wei
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1431-1435
    • /
    • 2018
  • Using first-principles calculations, we successfully investigate the electrochemical performance of the monoclinic $NaMnO_2$ for the sodium ion batteries. $NaMnO_2$ possesses a voltage window of 3.54-2.52 V and theoretical reversible capacity of $136mAh\;g^{-1}$. Besides, we find that the metallicity of the monoclinic $NaMnO_2$ gradually increases during Na extraction. Moreover, the computational Na migration energy barrier in the monoclinic $NaMnO_2$ is 0.18 eV, ensuring ideal conductivity and reversible capacity. Although the Jahn-Teller distortion effects limit the enhancement of the reversible capacity of the monoclinic $NaMnO_2$, it is still a right cathode material for the sodium ion batteries. The computational results are well in consistent with the experimental investigations.

Thermal Characteristics of $H_2O$-NaOH Mixtures Type PCM for the Low Temperature Storage of Food and Medical Products (식.의약품 저온 저장을 위한 $H_2O$-NaOH 혼합형 잠열재의 냉축 열특성)

  • Song, Hyun-Kap;Ro, Jeong-Geun;Moon, Young-Mo
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.1
    • /
    • pp.7-12
    • /
    • 2004
  • Mixtures type PCM, $H_2O$-NaOH that has relatively large capacity of the latent heat and long duration of phase change temperature was developed and experimentally analyzed for the low temperature storage of the food and medical products. The results could be summarized as follows; 1. Borax as nucleating agent and acrylic polymer as thickening agent were added to $H_2O$ to prevent the supercooling and phase separation. 2. Phase change (solid$\leftrightarrows$liquid) duration of $H_2O$ added with NaOH was prolonged longer 50% than that of pure $H_2O$. 3. Phase change temperature of the latent heat material, $H_2O$-NaOH was $1.5\sim2^{\circ}C$ the maximum latent Heat was 279 kJ/kg at the NaOH addition of 1.3 wt.%. 4. The specific heat of $H_2O$-NaOH at the solid and liquid state was increased in proportion to the wt.% of NaOH, when NaOH of $1.15\sim1.60$ wt.% was added to $H_2O$, the specific heat of the solid state was increased from 3.19 kJ/kg to 5.84 kJ/kg and that of liquid state from 7.8 kJ/kg to 10.28 kJ/kg. 5. When NaOH of $1.15\sim1.60$ wt.% was added to $H_2O$, the total heat storage capacity composed of sensible and latent heat was $313\sim331.3$ kJ/kg and the maximum heat storage capacity was occurred at NaOH addition of 1.30 wt. %.