DOI QR코드

DOI QR Code

First-principles investigation of the monoclinic NaMnO2 cathode material for rechargeable Na-ion batteries

  • Zhang, Renhui (Research Center of Material and Chemical Engineering, School of Material and Chemical Engineering, Tongren University) ;
  • Lu, Zhibin (Lanzhou Institute of Chemical Physics) ;
  • Yang, Yingchang (Research Center of Material and Chemical Engineering, School of Material and Chemical Engineering, Tongren University) ;
  • Shi, Wei (Research Center of Material and Chemical Engineering, School of Material and Chemical Engineering, Tongren University)
  • Received : 2018.04.02
  • Accepted : 2018.08.17
  • Published : 2018.11.30

Abstract

Using first-principles calculations, we successfully investigate the electrochemical performance of the monoclinic $NaMnO_2$ for the sodium ion batteries. $NaMnO_2$ possesses a voltage window of 3.54-2.52 V and theoretical reversible capacity of $136mAh\;g^{-1}$. Besides, we find that the metallicity of the monoclinic $NaMnO_2$ gradually increases during Na extraction. Moreover, the computational Na migration energy barrier in the monoclinic $NaMnO_2$ is 0.18 eV, ensuring ideal conductivity and reversible capacity. Although the Jahn-Teller distortion effects limit the enhancement of the reversible capacity of the monoclinic $NaMnO_2$, it is still a right cathode material for the sodium ion batteries. The computational results are well in consistent with the experimental investigations.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Department of Education of Guizhou province, Guizhou Province Natural Science Fund

References

  1. Z. Zhang, D. Wu, X. Zhang, X. Zhao, H. Zhang, F. Ding, Z. Xie, Z. Zhou, Firstprinciples computational studies on layered Na2Mn3O7 as a high-rate cathode material for sodium ion batteries, J. Mater. Chem. 5 (2017) 12752-12756. https://doi.org/10.1039/C7TA02609A
  2. H. Tang, M. Wang, T. Lu, L. Pan, Porous carbon spheres as anode materials for sodium-ion batteries with high capacity and long cycling life, Ceram. Int. 43 (2017) 4475-4482. https://doi.org/10.1016/j.ceramint.2016.12.098
  3. W. Fang, L. Fan, Y. Zhang, Q. Zhang, Y. Yin, N. Zhang, K. Sun, Synthesis of carbon coated Bi2O3 nanocomposite anode for sodium-ion batteries, Ceram. Int. 43 (2017) 8819-8823. https://doi.org/10.1016/j.ceramint.2017.04.014
  4. H. Hu, L. Yu, X. Gao, Z. Lin, X.W. Lou, Hierarchical tubular structures constructed from ultrathin TiO2(B) nanosheets for highly reversible lithium storage, Energy Environ. Sci. 8 (2015) 1480-1483. https://doi.org/10.1039/C5EE00101C
  5. T. Lan, J. Dou, F. Xie, P. Xiong, M. Wei, Ultrathin TiO2-B nanowires with enhanced electrochemical performance for Li-ion batteries, J. Mater. Chem. 3 (2015) 10038-10044. https://doi.org/10.1039/C5TA01061F
  6. H. Pan, Graphitic carbon nitride nanotubes as Li-ion battery materials: a firstprinciples study, J. Phys. Chem. C 118 (2014) 9318-9323. https://doi.org/10.1021/jp4122722
  7. L. Zhang, H.B. Wu, X.W. Lou, Iron-Oxide-based advanced anode materials for lithium- ion batteries, Adv. Energy Mater. 4 (2014) 1300958 n/a. https://doi.org/10.1002/aenm.201300958
  8. D. Su, S. Dou, G. Wang, Ultrathin MoS2 nanosheets as anode materials for sodiumion batteries with superior performance, Adv. Energy Mater. 5 (2015) 1401205 n/a. https://doi.org/10.1002/aenm.201401205
  9. X.-Y. Yu, H. Hu, Y. Wang, H. Chen, X.W. Lou, Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties, Angew. Chem. Int. Ed. 54 (2015) 7395-7398. https://doi.org/10.1002/anie.201502117
  10. Y. Liu, M. Zhu, D. Chen, Sheet-like MoSe2/C composites with enhanced Li-ion storage properties, J. Mater. Chem. 3 (2015) 11857-11862. https://doi.org/10.1039/C5TA02100F
  11. H. Pan, Electronic properties and lithium storage capacities of two-dimensional transition-metal nitride monolayers, J. Mater. Chem. 3 (2015) 21486-21493. https://doi.org/10.1039/C5TA06259D
  12. Y. Jing, Z. Zhou, C.R. Cabrera, Z. Chen, Graphene, inorganic graphene analogs and their composites for lithium ion batteries, J. Mater. Chem. 2 (2014) 12104-12122. https://doi.org/10.1039/C4TA01033G
  13. H. Xu, J. Zong, S. Chen, F. Ding, Z.-W. Lu, X.-J. Liu, Synthesis and evaluation of NaNi0.5Co0.2Mn0.3O2 as a cathode material for Na-ion battery, Ceram. Int. 42 (2016) 12521-12524. https://doi.org/10.1016/j.ceramint.2016.04.141
  14. C.C. Leong, H. Pan, S.K. Ho, Two-dimensional transition-metal oxide monolayers as cathode materials for Li and Na ion batteries, Phys. Chem. Chem. Phys. 18 (2016) 7527-7534. https://doi.org/10.1039/C5CP07357J
  15. C. Ataca, H. Şahin, S. Ciraci, Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure, J. Phys. Chem. C 116 (2012) 8983-8999. https://doi.org/10.1021/jp212558p
  16. E.A. Raekelboom, A.L. Hector, J. Owen, G. Vitins, M.T. Weller, Syntheses, structures, and preliminary electrochemistry of the layered lithium and sodium manganese(IV) oxides, A2Mn3O7, Chem. Mater. 13 (2001) 4618-4623. https://doi.org/10.1021/cm011105j
  17. J. Billaud, R.J. Clement, A.R. Armstrong, J. Canales-Vazquez, P. Rozier, C.P. Grey, P.G. Bruce, ${\beta}$-NaMnO2: a high-performance cathode for sodium-ion batteries, J. Am. Chem. Soc. 136 (2014) 17243-17248. https://doi.org/10.1021/ja509704t
  18. S. Guo, H. Yu, Z. Jian, P. Liu, Y. Zhu, X. Guo, M. Chen, M. Ishida, H. Zhou, A highcapacity, low-cost layered sodium manganese oxide material as cathode for sodiumion batteries, ChemSusChem 7 (2014) 2115-2119. https://doi.org/10.1002/cssc.201402138
  19. X. Ma, H. Chen, G. Ceder, Electrochemical properties of monoclinic NaMnO2, J. Electrochem. Soc. 158 (2011) A1307-A1312. https://doi.org/10.1149/2.035112jes
  20. I.-H. Jo, H.-S. Ryu, D.-G. Gu, J.-S. Park, I.-S. Ahn, H.-J. Ahn, T.-H. Nam, K.-W. Kim, The effect of electrolyte on the electrochemical properties of Na/${\alpha}$-NaMnO2 batteries, Mater. Res. Bull. 58 (2014) 74-77. https://doi.org/10.1016/j.materresbull.2014.02.024
  21. Z. Lan, M. Chen, X. Xu, C. Xiao, F. Wang, Y. Wang, Y. Lu, Y. Jiang, J. Jiang, Investigations on molybdenum dinitride as a promising anode material for Na-ion batteries from first-principle calculations, J. Alloys Compd. 701 (2017) 875-881. https://doi.org/10.1016/j.jallcom.2017.01.186
  22. D. Tao, Z. Fang, M. Qiu, Y. Li, X. Huang, K. Ding, W. Chen, W. Su, Y. Zhang, Firstprinciples study of Na2+xTi7O15 as anode materials for sodium-ion batteries, J. Alloys Compd. 689 (2016) 805-811. https://doi.org/10.1016/j.jallcom.2016.07.301
  23. M.D. Segall, J.D.L. Philip, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys. Condens. Matter 14 (2002) 2717. https://doi.org/10.1088/0953-8984/14/11/301
  24. N.J. Mosey, E.A. Carter, Ab initio, Phys. Rev. B 76 (2007) 155123. https://doi.org/10.1103/PhysRevB.76.155123
  25. J.-P. Parant, R. Olazcuaga, M. Devalette, C. Fouassier, P. Hagenmuller, Sur quelques nouvelles phases de formulae NaxMnO2 ($x\;{\leq}1\;$), J. Solid State Chem. 3 (1971) 1-11. https://doi.org/10.1016/0022-4596(71)90001-6
  26. F.L. Hirshfeld, Bonded-atom fragments for describing molecular charge densities, Theor. Chim. Acta 44 (1977) 129-138. https://doi.org/10.1007/BF00549096
  27. B. Xu, S. Meng, Factors affecting Li mobility in spinel LiMn2O4-a first-principles study by GGA and GGA+U methods, J. Power Sources 195 (2010) 4971-4976. https://doi.org/10.1016/j.jpowsour.2010.02.060
  28. J. Bao, D. Wu, Q. Tang, Z. Ma, Z. Zhou, First-principles investigations on delithiation of Li4NiTeO6, Phys. Chem. Chem. Phys. 16 (2014) 16145-16149. https://doi.org/10.1039/C4CP01627K
  29. X. Zhao, X. Zhang, D. Wu, H. Zhang, F. Ding, Z. Zhou, Ab initio investigations on bulk and monolayer V2O5 as cathode materials for Li-, Na-, K- and Mg-ion batteries, J. Mater. Chem. 4 (2016) 16606-16611. https://doi.org/10.1039/C6TA04986A
  30. X. Li, X. Ma, D. Su, L. Liu, R. Chisnell, S.P. Ong, H. Chen, A. Toumar, J.-C. Idrobo, Y. Lei, J. Bai, F. Wang, J.W. Lynn, Y.S. Lee, G. Ceder, Direct visualization of the Jahn-Teller effect coupled to Na ordering in Na5/8MnO2, Nat. Mater. 13 (2014) 586. https://doi.org/10.1038/nmat3964
  31. T. Ohzuku, J. Kato, K. Sawai, T. Hirai, Electrochemistry of manganese dioxide in lithium nonaqueous cells: IV. Jahn‐Teller deformation of in, J. Electrochem. Soc. 138 (1991) 2556-2560. https://doi.org/10.1149/1.2086016
  32. R.J. Clement, D.S. Middlemiss, I.D. Seymour, A.J. Ilott, C.P. Grey, Insights into the nature and evolution upon electrochemical cycling of planar defects in the ${\beta}$-NaMnO2 Na-ion battery cathode: an NMR and first-principles density functional theory approach, Chem. Mater. 28 (2016) 8228-8239. https://doi.org/10.1021/acs.chemmater.6b03074
  33. X. Li, Y. Wang, D. Wu, L. Liu, S.-H. Bo, G. Ceder, Jahn-teller assisted Na diffusion for high performance Na ion batteries, Chem. Mater. 28 (2016) 6575-6583. https://doi.org/10.1021/acs.chemmater.6b02440

Cited by

  1. Construction of Coral Shaped Ni(OH)2/Ni Dendrite and Fe2O3/Fe Dendrite Electrodes for Cable-Shaped Energy Storage Devices vol.166, pp.12, 2018, https://doi.org/10.1149/2.1221912jes
  2. Borophene as an anode material for Zn-ion batteries: a first-principles investigation vol.6, pp.8, 2019, https://doi.org/10.1088/2053-1591/ab1a88
  3. First-principles calculations of the monoclinic transition-metal doped NaMnO2 cathode material vol.100, pp.7, 2018, https://doi.org/10.1080/14786435.2020.1714770
  4. Redox, Magnetic, and Structural Properties of α-NaMnO2 Cathode Material Analyzed by Fitting-Free DFT+U Calculations, Parameterized by the Linear Response Approach vol.125, pp.2, 2021, https://doi.org/10.1021/acs.jpcc.0c09344
  5. Theoretical evaluation of multivalent cation diffusion in the 1T-δ-MnO2 electrode via potential energy surface vol.54, pp.11, 2018, https://doi.org/10.1088/1361-6463/abcf75
  6. Carbon coated NaLi0.2Mn0.8O2 as a superb cathode material for sodium ion batteries vol.866, pp.None, 2018, https://doi.org/10.1016/j.jallcom.2021.158950
  7. A Critical Review on Electrochemical Properties and Significance of Orthosilicate‐Based Cathode Materials for Rechargeable Li/Na/Mg Batteries and Hybrid Supercapacitors vol.6, pp.43, 2018, https://doi.org/10.1002/slct.202103210