Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.08.011

First-principles investigation of the monoclinic NaMnO2 cathode material for rechargeable Na-ion batteries  

Zhang, Renhui (Research Center of Material and Chemical Engineering, School of Material and Chemical Engineering, Tongren University)
Lu, Zhibin (Lanzhou Institute of Chemical Physics)
Yang, Yingchang (Research Center of Material and Chemical Engineering, School of Material and Chemical Engineering, Tongren University)
Shi, Wei (Research Center of Material and Chemical Engineering, School of Material and Chemical Engineering, Tongren University)
Abstract
Using first-principles calculations, we successfully investigate the electrochemical performance of the monoclinic $NaMnO_2$ for the sodium ion batteries. $NaMnO_2$ possesses a voltage window of 3.54-2.52 V and theoretical reversible capacity of $136mAh\;g^{-1}$. Besides, we find that the metallicity of the monoclinic $NaMnO_2$ gradually increases during Na extraction. Moreover, the computational Na migration energy barrier in the monoclinic $NaMnO_2$ is 0.18 eV, ensuring ideal conductivity and reversible capacity. Although the Jahn-Teller distortion effects limit the enhancement of the reversible capacity of the monoclinic $NaMnO_2$, it is still a right cathode material for the sodium ion batteries. The computational results are well in consistent with the experimental investigations.
Keywords
First-principles; SIBs; Capacity; Monolayered; $NaMnO_2$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Zhao, X. Zhang, D. Wu, H. Zhang, F. Ding, Z. Zhou, Ab initio investigations on bulk and monolayer V2O5 as cathode materials for Li-, Na-, K- and Mg-ion batteries, J. Mater. Chem. 4 (2016) 16606-16611.   DOI
2 X. Li, X. Ma, D. Su, L. Liu, R. Chisnell, S.P. Ong, H. Chen, A. Toumar, J.-C. Idrobo, Y. Lei, J. Bai, F. Wang, J.W. Lynn, Y.S. Lee, G. Ceder, Direct visualization of the Jahn-Teller effect coupled to Na ordering in Na5/8MnO2, Nat. Mater. 13 (2014) 586.   DOI
3 T. Ohzuku, J. Kato, K. Sawai, T. Hirai, Electrochemistry of manganese dioxide in lithium nonaqueous cells: IV. Jahn‐Teller deformation of in, J. Electrochem. Soc. 138 (1991) 2556-2560.   DOI
4 R.J. Clement, D.S. Middlemiss, I.D. Seymour, A.J. Ilott, C.P. Grey, Insights into the nature and evolution upon electrochemical cycling of planar defects in the ${\beta}$-NaMnO2 Na-ion battery cathode: an NMR and first-principles density functional theory approach, Chem. Mater. 28 (2016) 8228-8239.   DOI
5 X. Li, Y. Wang, D. Wu, L. Liu, S.-H. Bo, G. Ceder, Jahn-teller assisted Na diffusion for high performance Na ion batteries, Chem. Mater. 28 (2016) 6575-6583.   DOI
6 Z. Zhang, D. Wu, X. Zhang, X. Zhao, H. Zhang, F. Ding, Z. Xie, Z. Zhou, Firstprinciples computational studies on layered Na2Mn3O7 as a high-rate cathode material for sodium ion batteries, J. Mater. Chem. 5 (2017) 12752-12756.   DOI
7 H. Tang, M. Wang, T. Lu, L. Pan, Porous carbon spheres as anode materials for sodium-ion batteries with high capacity and long cycling life, Ceram. Int. 43 (2017) 4475-4482.   DOI
8 W. Fang, L. Fan, Y. Zhang, Q. Zhang, Y. Yin, N. Zhang, K. Sun, Synthesis of carbon coated Bi2O3 nanocomposite anode for sodium-ion batteries, Ceram. Int. 43 (2017) 8819-8823.   DOI
9 H. Hu, L. Yu, X. Gao, Z. Lin, X.W. Lou, Hierarchical tubular structures constructed from ultrathin TiO2(B) nanosheets for highly reversible lithium storage, Energy Environ. Sci. 8 (2015) 1480-1483.   DOI
10 T. Lan, J. Dou, F. Xie, P. Xiong, M. Wei, Ultrathin TiO2-B nanowires with enhanced electrochemical performance for Li-ion batteries, J. Mater. Chem. 3 (2015) 10038-10044.   DOI
11 H. Pan, Graphitic carbon nitride nanotubes as Li-ion battery materials: a firstprinciples study, J. Phys. Chem. C 118 (2014) 9318-9323.   DOI
12 L. Zhang, H.B. Wu, X.W. Lou, Iron-Oxide-based advanced anode materials for lithium- ion batteries, Adv. Energy Mater. 4 (2014) 1300958 n/a.   DOI
13 D. Su, S. Dou, G. Wang, Ultrathin MoS2 nanosheets as anode materials for sodiumion batteries with superior performance, Adv. Energy Mater. 5 (2015) 1401205 n/a.   DOI
14 C.C. Leong, H. Pan, S.K. Ho, Two-dimensional transition-metal oxide monolayers as cathode materials for Li and Na ion batteries, Phys. Chem. Chem. Phys. 18 (2016) 7527-7534.   DOI
15 X.-Y. Yu, H. Hu, Y. Wang, H. Chen, X.W. Lou, Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties, Angew. Chem. Int. Ed. 54 (2015) 7395-7398.   DOI
16 Y. Liu, M. Zhu, D. Chen, Sheet-like MoSe2/C composites with enhanced Li-ion storage properties, J. Mater. Chem. 3 (2015) 11857-11862.   DOI
17 H. Pan, Electronic properties and lithium storage capacities of two-dimensional transition-metal nitride monolayers, J. Mater. Chem. 3 (2015) 21486-21493.   DOI
18 Y. Jing, Z. Zhou, C.R. Cabrera, Z. Chen, Graphene, inorganic graphene analogs and their composites for lithium ion batteries, J. Mater. Chem. 2 (2014) 12104-12122.   DOI
19 H. Xu, J. Zong, S. Chen, F. Ding, Z.-W. Lu, X.-J. Liu, Synthesis and evaluation of NaNi0.5Co0.2Mn0.3O2 as a cathode material for Na-ion battery, Ceram. Int. 42 (2016) 12521-12524.   DOI
20 C. Ataca, H. Şahin, S. Ciraci, Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure, J. Phys. Chem. C 116 (2012) 8983-8999.   DOI
21 E.A. Raekelboom, A.L. Hector, J. Owen, G. Vitins, M.T. Weller, Syntheses, structures, and preliminary electrochemistry of the layered lithium and sodium manganese(IV) oxides, A2Mn3O7, Chem. Mater. 13 (2001) 4618-4623.   DOI
22 D. Tao, Z. Fang, M. Qiu, Y. Li, X. Huang, K. Ding, W. Chen, W. Su, Y. Zhang, Firstprinciples study of Na2+xTi7O15 as anode materials for sodium-ion batteries, J. Alloys Compd. 689 (2016) 805-811.   DOI
23 J. Billaud, R.J. Clement, A.R. Armstrong, J. Canales-Vazquez, P. Rozier, C.P. Grey, P.G. Bruce, ${\beta}$-NaMnO2: a high-performance cathode for sodium-ion batteries, J. Am. Chem. Soc. 136 (2014) 17243-17248.   DOI
24 S. Guo, H. Yu, Z. Jian, P. Liu, Y. Zhu, X. Guo, M. Chen, M. Ishida, H. Zhou, A highcapacity, low-cost layered sodium manganese oxide material as cathode for sodiumion batteries, ChemSusChem 7 (2014) 2115-2119.   DOI
25 X. Ma, H. Chen, G. Ceder, Electrochemical properties of monoclinic NaMnO2, J. Electrochem. Soc. 158 (2011) A1307-A1312.   DOI
26 I.-H. Jo, H.-S. Ryu, D.-G. Gu, J.-S. Park, I.-S. Ahn, H.-J. Ahn, T.-H. Nam, K.-W. Kim, The effect of electrolyte on the electrochemical properties of Na/${\alpha}$-NaMnO2 batteries, Mater. Res. Bull. 58 (2014) 74-77.   DOI
27 Z. Lan, M. Chen, X. Xu, C. Xiao, F. Wang, Y. Wang, Y. Lu, Y. Jiang, J. Jiang, Investigations on molybdenum dinitride as a promising anode material for Na-ion batteries from first-principle calculations, J. Alloys Compd. 701 (2017) 875-881.   DOI
28 M.D. Segall, J.D.L. Philip, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys. Condens. Matter 14 (2002) 2717.   DOI
29 N.J. Mosey, E.A. Carter, Ab initio, Phys. Rev. B 76 (2007) 155123.   DOI
30 J.-P. Parant, R. Olazcuaga, M. Devalette, C. Fouassier, P. Hagenmuller, Sur quelques nouvelles phases de formulae NaxMnO2 ($x\;{\leq}1\;$), J. Solid State Chem. 3 (1971) 1-11.   DOI
31 J. Bao, D. Wu, Q. Tang, Z. Ma, Z. Zhou, First-principles investigations on delithiation of Li4NiTeO6, Phys. Chem. Chem. Phys. 16 (2014) 16145-16149.   DOI
32 F.L. Hirshfeld, Bonded-atom fragments for describing molecular charge densities, Theor. Chim. Acta 44 (1977) 129-138.   DOI
33 B. Xu, S. Meng, Factors affecting Li mobility in spinel LiMn2O4-a first-principles study by GGA and GGA+U methods, J. Power Sources 195 (2010) 4971-4976.   DOI