• Title/Summary/Keyword: "The cat"

Search Result 2,110, Processing Time 0.028 seconds

Characterisation of Phenotypic and Genotypic Antibiotic Resistance Profile of Enterococci from Cheeses in Turkey

  • Kurekci, Cemil;Onen, Sevda Pehlivanlar;Yipel, Mustafa;Aslantas, Ozkan;Gundogdu, Aycan
    • Food Science of Animal Resources
    • /
    • v.36 no.3
    • /
    • pp.352-358
    • /
    • 2016
  • The aim of this study was to determine the prevalence of enterococci in cheese samples and to characterize their antimicrobial resistance profiles as well as the associated resistance genes. A total of 139 enterococci were isolated from 99 cheese samples, the isolates were identified as E. faecalis (61.2%), E. faecium (15.1%), E. gallinarum (12.9%), E. durans (5.0%), E. casseliflavis (2.9%) and E. avium (2.9%). The most frequent antimicrobial resistance observed in enterococci isolates was to lincomycin (88.5%), followed by kanamycin (84.2%), gentamycin (low level, 51.1%), rifampin (46.8%) and tetracycline (33.8%). Among the isolates, the frequencies of high level gentamycin and streptomycin resistant enterococci strains were 2.2% and 5.8%, respectively. Apart from the mentioned antibiotics, low levels of resistance to ciprofloxacin, erythromycin and chloramphenicol were found. Moreover no resistance was observed against penicillin and ampicillin. The antimicrobial resistance genes including tetM, tetL, ermB, cat, aph(3’)-IIIa, ant(6)-Ia and aac(6’)-Ieaph(2”)-Ia were found in enterococci from Turkish cheese samples. In the current study, we provided data for antibiotic resistance and the occurrence of resistance genes among enterococci. Regulatory and quality control programs for milk and other dairy products from farms to retail outlets has to be established and strengthened to monitor trends in antimicrobial resistance among emerging food borne pathogens in Turkey.

Inhibitory Effect of Retinoic Acid on lipid Synthesis in Human Sebocyte (피지선세포에서 Retinoic Acid의 피지생성억제효과)

  • Mun Yeun Ja;Kim Youn Seok;Kwon Gang Joo;Rhee Hee Sub;Roh Seong Taek;Kim Yang Jin;Lee Jang Cheon;Woo Won Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.5
    • /
    • pp.1317-1321
    • /
    • 2004
  • The differentiation of the sebaceous gland is remarkably species-specific and sebocytes may play crucial parts in the pathophysiologic processes and disorders of pilosebaceous unit SZ95 cell is an immortalized human sebaceous gland cell line that shows characteristics of normal human sebocytes, In this study, we investigated the effect of testosterone and the anti-androgenic effect of 13-cis-retinoic acid (13-cis-RA) on lipid synthesis in SZ95 cells. Cytoplasmic lipid droplets were shown by Oil-red staining. The majority of the SZ95 cells positively labeled with Oil-red dye, while HaCaT cells negatively labeled with Oil red dye. Total lipid level of SZ96 cells is higher 4 times than that of HaCat cells. Testosterone markedly increased 2 times lipid synthesis of SZ95 cells in compared with control. 13-cis-RA significantly inhibited lipid synthesis and cell proliferation in SZ95 cells. Combined treatment with testosterone and 13-cis-RA resulted in a lower total lipid levels than that with androgen alone. In conclusion, SZ95 cells well resembled the morphologic and functional characteritics of normal human sebocytes. This in vitro model could provide a valuable tool for the study of sebocytes with a key role in pathophysiology and differentiation of sebaceous glands.

Synergetic Hepatoprotective Effects of Korean Red Ginseng and Pueraria Radix on the Liver Damaged-Induced by Carbon Tetrachloride (CCl4) in Mice

  • Hwang, Seung Hwan;Wang, Zhiqiang;Kang, Il-Jun;Lim, Soon Sung
    • Natural Product Sciences
    • /
    • v.23 no.2
    • /
    • pp.132-138
    • /
    • 2017
  • This study was designed to investigate the synergetic hepatoprotective effects from a mixture of Korean Red Ginseng and Pueraria Radix on carbon tetrachloride ($CCl_4$)-induced hepatotoxicity in mice. Liver toxicity was induced by intraperitoneal administration of $CCl_4$ (0.6 mg/kg) in 12 groups of ICR mice. The negative control group was given $CCl_4$ without test samples and the normal group was given no treatment. Among treatment groups, the RGAP treatment (Korean Red ginseng acetic acid extract : Pueraria radix water extract, w/w, 38.4:57.6) decreased $CCl_4$-elevated ALT (101.60 IU/L), AST (833.89 IU/L), and LDH (365.02 IU/L) levels in the serum, and increased the SOD (11.03 unit/mg protein) and CAT (0.37 unit/mg protein) levels and the LPO levels ($59.09{\mu}M/g$ tissue) more than that in the mice group with $CCl_4$-induced control group hepatotoxicity. These results suggest that administration of a mixture of Korean Red ginseng and Pueraria radix decreases $CCl_4$-induced liver damage and enhances antioxidant activity in mice and imply that administration of the mixture in a certain ratio is more effective than single administration of either Korean Red ginseng or Pueraria radix alone.

Synthesis of Flake Ag Powder by Polyol Process (폴리올법에 의한 편상의 은 분말 합성)

  • Kim Dong-Jin;Liang Huanzhen;Ahn Jong-Gwan;Lee Jae-Ryeong;Chung Hun-Saeng
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.477-485
    • /
    • 2004
  • Monodispersed flaky silver powder was obtained by controlling the ratios of $H_{2}O_{2}/NH_{3}$ and Agin in a mixed solution of ethylene glycol and ammonia with an addition of PVP. The effects of $NH_{3}/Ag,\; H_{2}O_{2}/Ag\;and\;H_{2}PtCl_{6}/Ag$ on its morphology and size were investigated. In $H_{2}O_{2}-NH_{3}-AgNO_{3}\;system,\;NH_{3}/Ag$ molar ratio was found to be an important reaction factor for the nucleation and crystal growth of Ag powder. The synthesis of flaky powder was optimized at over 6 of $NH_{3}/Ag \;and\;5\;of\;H_{2}O_{2}/Ag\;under\;1.0{\times}10^{-3}\;of\;Pt/Ag.\;Moreover,\;as\;the\; NH_{3}/Ag$ molar ratio increased, the size of precipitates was increased regardless of the amount of Pt. In the absence of $H_{2}PtCI$, the morphology and size of reduced Ag powder were found to be irregular in shape $2-4{\mu}m$ in diameter. However, homogenized fine Ag powder was obtained due to heterogeneous nucleation when $H_{2}PtCI$ used as a cat-alyst, and flaky one was synthesized with the addition of Pt over $1.0{\times}10^{-3}$ of Pt/Ag.

Isoegomaketone Upregulates Heme Oxygenase-1 in RAW264.7 Cells via ROS/p38 MAPK/Nrf2 Pathway

  • Jin, Chang Hyun;So, Yang Kang;Han, Sung Nim;Kim, Jin-Baek
    • Biomolecules & Therapeutics
    • /
    • v.24 no.5
    • /
    • pp.510-516
    • /
    • 2016
  • Isoegomaketone (IK) was isolated from Perilla frutescens, which has been widely used as a food in Asian cuisine, and evaluated for its biological activity. We have already confirmed that IK induced the HO-1 expression via Nrf2 activation in RAW264.7 cells. In this study, we investigated the effect of IK on the mechanism of HO-1 expression. IK upregulated HO-1 mRNA and protein expression in a dose dependent manner. The level of HO-1 mRNA peaked at 4 h after $15{\mu}M$ IK treatment. To investigate the mechanisms of HO-1 expression modulation by IK, we used pharmacological inhibitors for the protein kinase C (PKC) family, PI3K, and p38 MAPK. IK-induced HO-1 mRNA expression was only suppressed by SB203580, a specific inhibitor of p38 MAPK. ROS scavengers (N-acetyl-L-cysteine, NAC, and glutathione, GSH) also blocked the IK-induced ROS production and HO-1 expression. Furthermore, both NAC and SB203580 suppressed the IK-induced Nrf2 activation. In addition, ROS scavengers suppressed other oxidative enzymes such as catalase (CAT), glutathione S-transferase (GST), and NADH quinone oxidoreductase (NQO-1) in IK-treated RAW264.7 cells. Taken together, it can be concluded that IK induced the HO-1 expression through the ROS/p38 MAPK/Nrf2 pathway in RAW264.7 cells.

The Effect of Meliae toosendan fructus Ethanol Extract on Blood Glucose, Lipid metabolism, Carbohydrate Methabolism Related Enzyme Activities and Antioxidative Effect in Streptozotocin-Induced Diabetic Rats (천련자 에탄올 추출물이 Streptozotocin으로 유발된 당뇨 흰쥐에 대한 혈당, 지질대사, 당대사 효소 활성과 항산화 작용에 미치는 영향)

  • Kim, Ok-Kyung;Leem, Hee-Jin;Je, Jung-Min;Lee, Gyung-Mi
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.277-284
    • /
    • 2014
  • The ethanol extraction yield of Meliae toosendan fructus(MT) was about 24.5% by extract apparatus. This study was done to investigate the carbohydrate metabolism related enzyme activities and antioxidative effects of MT in streptozotocin (STZ)-induced diabetic rats. The contents of serum glucose, triglyceride (TG) were significantly decreaed in MT treated group compared to the those of STZ-control group, also content of Total cholesterol was decreased. High density lipoprotein (HDL)-cholesterol was increased in MT treated group. The activity of glucose-6-pase(G-6-Pase) was significantly decreased in MT treated group. Also the activities of glucose-6-phosphate dehydrogenase(G-6-PDH) and glucokinase(Gk) were increaed in MT treated group. The content of hepatic glycogen was significantly increaed in MT treated group, in addition, content of malondialdehyde(MDA) was significanly decreased in MT treated group. Also, content of glutathione(GSH)was dereased in MT treated froup. whereas, activity of catalase(CAT) was significantly increaed in MT treated group compared to the those of STZ-control group. activity of glutathione peroxidase(GSH-Px) was inecreaed. In conclusion, these results indicated that ethanol extract of MT would have carbohydrate metabolism antioxidative effects in STZ-induced diabetic rats.

Regioselective Oxidation of Lauric Acid by CYP119, an Orphan Cytochrome P450 from Sulfolobus acidocaldarius

  • Lim, Young-Ran;Eun, Chang-Yong;Park, Hyoung-Goo;Han, Song-Hee;Han, Jung-Soo;Cho, Kyoung-Sang;Chun, Young-Jin;Kim, Dong-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.574-578
    • /
    • 2010
  • Archaebacteria Sulfolobus acidocaldarius contains the highly thermophilic cytochrome P450 enzyme (CYP119). CYP119 possesses stable enzymatic activity at up to $85^{\circ}C$. However, this enzyme is still considered as an orphan P450 without known physiological function with endogenous or xenobiotic substrates. We characterized the regioselectivity of lauric acid by CYP119 using the auxiliary redox partner proteins putidaredoxin (Pd) and putidaredoxin reductase (PdR). Purified CYP119 protein showed a tight binding affinity to lauric acid ($K_d=1.1{\pm}0.1{\mu}M$) and dominantly hydroxylated (${\omega}-1$) position of lauric acid. We determined the steady-state kinetic parameters; $k_{cat}$ was 10.8 $min^{-1}$ and $K_m$, was 12 ${\mu}M$. The increased ratio to $\omega$-hydroxylated production of lauric acid catalyzed by CYP119 was observed with increase in the reaction temperature. These studies suggested that the regioselectivity of CYP119 provide the critical clue for the physiological enzyme function in this thermophilic archaebacteria. In addition, regioselectivity control of CYP119 without altering its thermostability can lead to the development of novel CYP119-based catalysts through protein engineering.

First Report of Feline Intestinal Trichomoniasis Caused by Tritrichomonas foetus in Korea

  • Lim, Sun;Park, Sang-Ik;Ahn, Kyu-Sung;Oh, Dae-Sung;Ryu, Jae-Sook;Shin, Sung-Shik
    • Parasites, Hosts and Diseases
    • /
    • v.48 no.3
    • /
    • pp.247-251
    • /
    • 2010
  • Feline intestinal tritrichomoniasis by Tritrichomonas foetus was first recognized in USA in 1999 and has so far been reported from UK, Norway, Switzerland, and Australia, but not from the Far East Asian countries. In November 2008, 2 female and male littermate Siamese cats, 6-month old, raised in a household in Korea were referred from a local veterinary clinic with a history of chronic persistent diarrhea. A direct smear examination of fecal specimens revealed numerous trichomonad trophozoites which were isolated by the fecal culture in $InPouch^{TM}$ TF-Feline medium. A PCR testing of the isolate based on the amplification of a conserved portion of the T. foetus internal transcribed spacer (ITS) regions (ITS1 and ITS2) and the 5.8S rRNA gene, and the molecular sequencing of the PCR amplicons confirmed infection with T. foetus. This is the first clinical case of feline intestinal trichomoniasis caused by T. foetus in Korea.

Transcriptome-based identification of water-deficit stress responsive genes in the tea plant, Camellia sinensis

  • Tony, Maritim;Samson, Kamunya;Charles, Mwendia;Paul, Mireji;Richard, Muoki;Mark, Wamalwa;Stomeo, Francesca;Sarah, Schaack;Martina, Kyalo;Francis, Wachira
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.302-310
    • /
    • 2016
  • A study aimed at identifying putative drought responsive genes that confer tolerance to water stress deficit in tea plants was conducted in a 'rain-out shelter' using potted plants. Eighteen months old drought tolerant and susceptible tea cultivars were each separately exposed to water stress or control conditions of 18 or 34% soil moisture content, respectively, for three months. After the treatment period, leaves were harvested from each treatment for isolation of RNA and cDNA synthesis. The cDNA libraries were sequenced on Roche 454 high-throughput pyrosequencing platform to produce 232,853 reads. After quality control, the reads were assembled into 460 long transcripts (contigs). The annotated contigs showed similarity with proteins in the Arabidopsis thaliana proteome. Heat shock proteins (HSP70), superoxide dismutase (SOD), catalase (cat), peroxidase (PoX), calmodulinelike protein (Cam7) and galactinol synthase (Gols4) droughtrelated genes were shown to be regulated differently in tea plants exposed to water stress. HSP70 and SOD were highly expressed in the drought tolerant cultivar relative to the susceptible cultivar under drought conditions. The genes and pathways identified suggest efficient regulation leading to active adaptation as a basal defense response against water stress deficit by tea. The knowledge generated can be further utilized to better understand molecular mechanisms underlying stress tolerance in tea.

Heterologous Expression and Characterization of a Thermostable Exo-β-D-Glucosaminidase from Aspergillus oryzae

  • Wu, Dingxin;Wang, Linchun;Li, Yuwei;Zhao, Shumiao;Peng, Nan;Liang, Yunxiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.347-355
    • /
    • 2016
  • An exo-β-D-glucosaminidase (AorCsxA) from Aspergillus oryzae FL402 was heterologously expressed and purified. The deduced amino acid sequence indicated that AorCsxA belonged to glycoside hydrolase family 2. AorCsxA digested colloid chitosan into glucosamine but not into chitosan oligosaccharides, demonstrating exo-β-D-glucosaminidase (CsxA) activity. AorCsxA exhibited optimal activity at pH 5.5 and 50℃; however, the enzyme expressed in Pichia pastoris (PpAorCsxA) showed much stronger thermostability at 50℃ than that expressed in Escherichia coli (EcAorCsxA), which may be related to glycosylation. AorCsxA activity was inhibited by EDTA and most of the tested metal ions. A single amino acid mutation (F769W) in AorCsxA significantly enhanced the specific activity and hydrolysis velocity as revealed by comparison of Vmax and kcat values with those of the wild-type enzyme. The three-dimensional structure suggested the tightened pocket at the active site of F769W enabled efficient substrate binding. The AorCsxA gene was heterologously expressed in P. pastoris, and one transformant was found to produce 222 U/ml activity during the high-cell-density fermentation. This AorCsxA-overexpressing P. pastoris strain is feasible for large-scale production of AorCsxA.