High-speed multi-pass wet wire drawing has become very common for production of high-carbon steel cord because of the increase in customer demand and production rates in real industrial fields. Although, the wet wire drawing process is performed at a high speed usually above 1000m/min, greater speed is required to improve productivity. However, in the high-carbon steel wire drawing process, the wire temperature rises greatly as the drawing speed increase. The excessive temperature rise makes the wire more brittle and finally leads to wire breakage. In this study, the variations in wire temperature during the multi-pass wet wire drawing process were investigated. A multi-pass wet wire drawing process with 21 passes, which is used to produce steel cord, was redesigned by considering the increase in temperature. Through a wet wire drawing experiment, it was possible to increase the maximum final drawing speed to 2000m/min.