University teachers of linear algebra often feel annoyed and disarmed when faced with the inability of their students to cope with concepts that they consider to be very simple. Usually, they lay the blame on the impossibility for the students to use geometrical intuition or the lack of practice in basic logic and set theory. J.-L. Dorier [(2002): Teaching Linear Algebra at University. In: T. Li (Ed.), Proceedings of the International Congress of Mathematicians (Beijing: August 20-28, 2002), Vol. III: Invited Lectures (pp. 875-884). Beijing: Higher Education Press] mentioned that the situation could not be improved substantially with the teaching of Cartesian geometry or/and logic and set theory prior to the linear algebra. In East Asian countries, science-orientated mathematics curricula of the high schools consist of calculus with many other materials. To understand differential and integral calculus efficiently or for other reasons, students have to learn a lot of content (and concepts) in linear algebra, such as ordered pairs, n-tuple numbers, planar and spatial coordinates, vectors, polynomials, matrices, etc., from an early age. The content of linear algebra is spread out from grades 7 to 12. When the high school teachers teach the content of linear algebra, however, they do not concern much about the concepts of content. With small effort, teachers can help the students to build concepts of vocabularies and languages of linear algebra.