Myocardial infarction is a disease caused by stenosis of the coronary arteries. The high risk of sudden cardiac death due to myocardial infarction has triggered related researches that have been actively studied so far. However, these studies focused on the clinical results, which are mainly based on observations of symptoms due to infarction through electrocardiograms. Therefore, in this study, we tried to analyze the behavior of heart according to the position and volume of infarction lesion through the computer simulation study using three dimensional ventricular models. In order to implement infarction, commercial software was used to simulate cell necrosis due to blockage of a specific coronary. In addition, the conduction block due to infarction was mimicked by reducing the electrical conduction in the infarcted area, which was 100 times less than the electrical conduction of the whole ventricular lattice implemented by the finite element analysis method. Thus, this study classified the infarcted cases into the upper, middle, lower, and apex according to lattice data of eight different infraction areas. In other words, we assumed that myocardial infarction would have inherent electro-dynamic characteristics depending on the location and extent, and analyzed the ventricular electromechanical responses for infarction lesions using a three dimensional cardiac physiome model. The results showed that the volume of infarction did not directly affect the cardiac responses, but the location of the infarction lesions could influence the ventricular pumping efficiency. These suggest that the occlusion of specific coronary arteries may have a fatal effect on the decline in ventricular performance. In conclusion, although location of myocardial infarction lesions is considered to be an important variable to be considered clinically rather than lesion size, quantitative predictions should be made more in the future considering physiological factors such as lesion location and direction of myocardial fiber at that location.