유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
-
A numerical study based on the three-dimensional thin-layer Navier-Stokes solver is carried out to analyze the flowfield through a single stage transonic compressor. Explicit four-step Runge-Kutta scheme with spatially variable time step and implicit residual smoothing is used. The governing equations are discretized with exploit finite difference method. Mixed-out average method is used at the interface between rotor and stator. And, an artificial dissipation model is used to assure the stability of solution. The results with k-
$\omega$ turbulence model were compared to the results with Baldwin-Lomax model, and physical phenomena of transonic compressor are presented. The two turbulence models give the results that show reasonably good agreements with experimental data. -
Upgrade development of a high pressure ratio centrifugal compressor in marine engine turbochargers is presented. A new matched operating point at increased speed of rotation was determined through system cycle analysis using the exisitng test data of turbine performance. Under some severe restrictions for geometric parameters, the state-of-the-art methods of both aerodynamic design and CFD analysis were applied, in which only an impeller, a vaned diffuser and some part of casing wall were modified. Prototype hardware was fabricated and assembled for system performance tests. Excellent performance in pressure ratio and efficiency was obtained over whole speed region. Reduced surge and choke margin was, however, observed at design speed of rotation.
-
Analytical and experimental investigations have been carried out on the gas pulsations in the discharge paths of a high-side horizontal scroll compressor, where the gas discharged from compression chamber is made to pass through several chambers inside the compressor shell. Model of Helmholtz resonators in series has been applied to this configuration to predict gas pulsation phenomena along the passages, and the calculation results have been compared with measured pressure time traces. Good agreements between the analytical and experimental results have been obtained. It has also been found that the compressor performance is somewhat affected by the size of individual chambers Inside the compressor shell.
-
This paper describes the control charcteristics of thermal/flow systems. In thermal/flow systems, the transport lag plays as a dead time causing a deterioration of the controllability. Besides this, such many parameters including the temperature, pressure, and flow rate affect the system response that a control scheme which can deal with multi-input is required. Particularly in a refrigerant compressor test facility, the evaporator and condenser interact each other so that the change in the evaporator pressure cause the condenser pressure to change or vice versa. Therefore, to control the evaporator pressure, not only the cooling water flow rate in the evaporator but also the coolant flow rate in the condenser is considered. Meanwhile, the conventional PID controllers, which is suitable for a single input system, shows a large overshoot for a disturbance input. In this work, the predictive control scheme is introduced and its applicability is discussed for thermal/flow systems.
-
A centrifugal compressor was tested with three different diffusers with plate vanes. The vane inlet angle was varied from 15 to 30 dog. The higher static pressure rises are obtained with lower vane stagger angle. In the stable region the static pressure field in vaneless space is very sensitive to flow rate. The impeller has a stabilizing effect over the whole stable operating range. The diffuser has a stabilizing effect at high flow rate but is destabilizing at low flow rate.
-
We have measured pressure distributions within the diffuser and pressures at the inlet and outlet of the compressor in orde to match impeller and low-solidity diffuser of 500RT centrifugal refrigerant-compressor which has been developed in LG Cable Ltd. Modified Stanitz equation is used to predict the measured data by tuning several parameters and then is validated. Using the validated parameters and modified Stanitz equation, we have obtained data necessary to design the diffuser.
-
The aim of this paper is to understand the unsteady flow phenomena in a high speed centrifugal compressor channel diffuser. Instantaneous pressures are measured at six locations in the diffuser using fast-response pressure transducers. Instantaneous pressure ratio decomposition was applied to analyze the pressure signal. In vaneless space where impeller-vaned diffuser interaction is strong, aperiodic unsteadiness is high and periodic pressure waveforms by blade passing are not clear at low flow rates, especially near vane suction side. High aperiodic unsteadiness decreases downstream of diffuser. The blade-to-blade pressure wave does not disappear in surge flow condition. In surge there exist not only large scale periodic surge wave but also blade-to-blade pressure wave.
-
The major source of noise in the process of transporting liquids is related to the cavitation phenomenon. The control valve noise is mostly dominated by bubble dynamics under cavitating conditions. In this investigation, an orifice configuration is set-up to correlate its flow-field and acoustic signatures with those from a control valve device. The performance and noise characteristics form the orifice configuration in anechoic surroundings were measured to reveal the noise sources depending on pressure differences across the orifice configuration. The sound powers from the orifice configuration are effectively normalized using proposed scaling parameters. Flow-excited dynamic systems for which there is no strong coupling between the flow and the system response can be described using a linear source-filter model. On this assumption, the normalized sound powers can be decomposed of noise source function and a response function. To find noise sources, pressure spectra measured over a range of pressure differences are transformed into the product of two non-dimensional frequency function :
$P_{ss}(He,f_{ca},x/D) = F(f_{ca})\;G(He,x/D)$ . This scheme of finding noise sources is shown to be applicable to the cavitation noise from the control valve effectively Two kinds of cavitating modes based on our experimental data are found and discussed. -
In contracts for sales of natural gas between sellers and buyers, it is not suncient to only measure a volumetric quantity of gas in flowing conditions in metering station. Therefore the measured volumetric quantity must be converted to that of reference conditions. The density of the natural gas required in such a calculation can be measured directly or estimated from the equation of sate or any other experimental methods. The specific gravity meter is the apparatus used to measure the density of fluids under the reference conditions and it can be widely used in industrial areas, especially in massive flow rate natural gas industry. This study has been carried out in an attempt to improve measurement accuracy of natural gas flow rate calculation, providing the adequate installation and proper operation conditions of specific gravity meter. The test results are 1) the density measurement errors in case of using methane and standard gas as calibration gases are smaller than using methane and nitrogen gas, 2) the periodical calibration to maintain accurate density measurements is essential, and 3) the specific gravity meter is sensitive to changes of environmental conditions, especially environmental temperature surrounding the specific gravity meter.
-
Orifice flow meters are frequently used for measuring gas flow in gas industry. However, to insure the accuracy of the measurement, a certain length of the meter run at the upstream of the flow meter is required. The objective of this study is to analyze flow measurement errors of the orifice flow meter quantitatively for shorter lengths of the meter runs than those suggested in the standard manuals with variation of diameter ratio(
$\beta$ ratio) and flow rate. The test results showed that the flow measurement errors of the orifice meter were inversely proportional to the diameter ratio. In other words, when the diameter ratio is 0.3 and 0.7, the measurement error is$-7.3\%$ and$-3.5\%$ , respectively. the main reason of the measurement error is due to the swirl effect from the configuration of the meter run at the upstream of the flow meter. In case the length of the meter run is shorter than that suggested in the standard manuals, the swirl effect is not removed completely and it affects the flow meter's performance. As mentioned above, the less the pipe diameter ratio, the more the flow measurement error. It means that the swirl effect on the orifice meter increases as the$\beta$ ratio decreases. -
Thermal mass flow meter (TMF) is used measuring the small mass flow rate of gases. Generally, flow rate measuring accuracy of TMF is
$\pm2{\%}$ of full scale. TMF is manufactured for specified working pressure and specified working gas by customer. If it were applied for different working pressure and gases, flow rate measurement accuracy decreased dramatically. In this study, a TMF tested with three different gases and pressure range of 0.2 MPa to 1.0 MPa. Effect of specific heat cause to increase flow measurement error as much as ratio of specific heat compare with reference gas. Pressure change cause to increase flowrate measurement deviation about$-0.2{\%}$ as the working pressure decreased 0.1 MPa. -
Five-path ultrasonic flowmeters (200 and 300 mm diameters) were tested to obtain it's characteristics in a water flow standard system. A five-path ultrasonic flowmeter was installed after various pipe fittings (elbow, valve, tee) or a pump. The distance between flow disturbance source and a flowmeter was main experimental parameter. Without a flow conditioner, a five-path ultrasonic flowmeter shows good characteristics as the distance between flow disturbance source and a flowmeter is longer than 10 diameter of a flowmeter.
-
Thermal mass flow meter was developed using principle of convective heat transfer. The advantage of thermal mass flow meter is measuring mass flow directly, therefore, it is not required to use densitometer or temperature/pressure and DP gages. The final accuracy of this thermal mass flow meter is
$\pm1.0{\%}$ or better, reproducibility is$\pm0.2{\%}$ , and the response time is 600 ms. The thermal mass flow meter was developed from a single point to multi-points (maximum is 9 points), and the number of points is determined according to desired accuracy and size of piping/duct. Since this thermal mass flow meter adopted microprocessor based design, it is intrinsically accurate, self-error detectable, and has self-diagnosis function. The applications of this thermal mass flow meter are for measurement and control of HVAC air flow, other gas flow, and liquid flow. -
This paper reports the impeller performance of centrifugal pump, modified HES65-250. Developed CFD code uses SIMPLE algorithm, power-law scheme, standard k-
$\epsilon$ turbulence model in curvilinear coordinate system. The calculations are conducted for 5 cases, from 0.6 to 1.4 of flow rate ratio with 0.2 increment. The flow characteristics inside of impeller are analysed. The results show that reversal flows exist at the inlet of impeller which have small rotary stagnation pressure. The obtained results are compared with the experimental data at impeller exit and shows good qualitative agreement. -
A three-dimensional CSCM upwind flux difference splitting Navier-stokes code with two-equation turbulence models was developed to predict the transonic flows in centrifugal compressor diffuser. The k-
$\epsilon$ model of Abe et al. performed well in predicting the pressure distribution in the shock wave/turbulent boundary-layer interaction. Three turbulence models predicted the similar distribution of static pressure through the diffuser and showed a good agreement with the experimental results. The secondary flows in the corner were predicted well by these turbulence models. The pressure increase before the throat of the diffuser vane is important for the overall pressure recovery. As the mass flow rate increased the blockage decreased at the throat. The pressure coefficient distribution through the diffuser depended on the throat blockage not on the rotational speed of the impeller. -
The comming of high speed computers with large memory size in recent years has allowed the practical development of codes which solve the Reynolds-averaged NAvier-Stokes (RANS) equations in three dimensions. Such codes are already used by the large engine manufacturers for the advanced design of some engine components. Different computational fluid dynamics approaches and turbulence models exist, and it seems essential today to establish their degree of validity for application to typical configurations in turbomachinery. In 1993 the Turbomachinery Committee of the IGTI of ASME has issued an open invitation to predict the flow details of an isolated transonic fan rotor called as NASA ROTOR 37. This paper reports this test case.
-
The importance of CFD work in the process of turbomachinery development has been continuously growing. It is therefore necessary to have some bench marks for validation purposes when any CFD codes are to be developed. In the present study, some public information on centrifugal compressor test results is collected to render useful data for the developers.
-
The numerical procedure has been developed for simulating incompressible viscous flow around a turbine stage with rotor-stator interaction. This study solves 2-D unsteady incompressible Navier-Stokes equations on a non-orthogonal curvilinear coordinate system. The Marker-and-Cell concept is applied to efficiently solve continuity equation. To impose an accurate boundary condition, O-H multiblocked grid system is generated. O-type grid and H-type grid is generated near and outer rotor-stator The cubic-spline interpolation is applied to handle a relative motion of a rotor to the stator. Turbulent flows have been modeled by the Baldwin- Lomax turbulent model. To validate present procedure, the time averaged pressure coefficients around the rotor and stator are compared with experiment and a good agreement obtained.
-
In general, an impeller of centrifugal turbomachinery is designed at isolated condition without considering the presence of a volute, but when the impeller is operating with its volute, the performance of impeller can be different. This is largely caused by the interaction between the impeller and volute flow fields. The magnitude of distortion is increased as the operating point is away from the design point and, as a result, the interaction between the impeller and volute is stronger. In the present calculation, the flow through the impeller is simulated using coarse grids. The flow within the impeller and the volute is naturally unsteady, but the flow is assumed to be steady across the interface between the volute and impeller flow fields. Under the assumption of steady three-dimensional incompressible turbulent flow, the time averaged N-S equations involving standard k-
$\epsilon$ turbulent model was solved by the F.V.M. The calculation results are compared with the experimental results obtained for an industrial fan by Sakai etc. and the Hood agreement is demonstrated. And the effects of the impeller-volute interaction are studied. -
Three-dimensional flow analysis is implemented to investigate the flow through transonic axial-flow compressor rotor(NASA R67), and to evaluate the performances of k-
$\epsilon$ and Baldwin-Lomax turbulence models. A finite volume method is used for spatial discretization. And, the equations are solved implicitly in time with the use of approximate factorization. Upwind difference scheme is used for inviscid terms, but viscous terms are centrally differenced. The flux-difference-splitting of Roe is used to obtain fluxes at the cell faces. Numerical analysis is performed near peak efficiency and near stall. And, the results are compared with the experimental data for NASA R67 rotor. Blade-to-Blade Mach number distributions are compared to confirm the accuracy of the code. From the results, we conclude that k-$\epsilon$ model is better for the calculation of flow rate and efficiency than Baldwin-Lomax model. But, the predictions for Mach number and shock structure are almost same. -
The revision was proposed for methods A-weighted sound pressure measurement for fans, blowers and compressors in order to apply newly developed measurement techniques to KS B 6361 established in 1987. This proposal includes modification of terminologies, revision of sound power methods for radiated sound from the body, inclusion of In-duct measurement method, and correction method for flow noise upon microphon.
-
An efficient inverse design technique based on the MGM (Modified Garabedian-McFadden) method has been developed. The 2-D Navier-Stokes equations are solved for obtaining the surface pressure distributions and coupled with the MGM method to perform the inverse design. The solver is parallelized by using the domain decomposition method and the standard MPI library for communications between the processors. The MGM method is a residual-correction technique, in which the residuals are the difference between the desired and the computed pressure distribution. The developed code was applied to several airfoil shapes and the axial blade. It has been found that they are well converged to their target pressure distribution.
-
The present work describes the prediction method for the unsteady flow field and the acoustic pressure field of a ducted axial fan. The prediction method is comprised of time-marching free-wake method, acoustic analogy, and the Helmholtz-Kirchhoff BEM. The predicted sound signal of a rotor is similar to the experiment one. We assume that the rotor rotates with a constant angular velocity and the flow field around the rotor is incompressible and inviscid. Then, a time-marching free-wake method is used to model the fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. The newly developed Helmholtz-Kirchhoff BEM for thin body is used to calculate the sound field of the ducted fan. The ducted fan with 6 blades is analysed and the sound field around the duct is calculated.
-
Three-dimensional flow analysis and numerical optimization methods are presented for the design of an axial-flow fan. Steady, Incompressible, three-dimensional Reynolds-averaged Wavier-Stokes equations are used as governing equations, and standard k-
$\epsilon$ turbulence model is chosen as a turbulence model. Governing equations are discretized using finite volume method. Steepest descent method, conjugate gradient method and BFGS method are compared to determine the searching directions. Golden section method and quadratic fit-sectioning method are tested for one dimensional search. Objective function is defined as a ratio of generation rate of the turbulent kinetic energy to pressure head. Sweep angle distributions are used as design variables. -
Detailed Measurements were made to investigate the turbulence characteristics of a leakage vortex in an axial-flow fan using three-dimensional LDV. The turbulence in the leakage vortex has highly anisotropic characteristics with the radial value being the maximum. The turbulence intensity components in the vortex in the streamwise and tangential directions increase up to a certain downstrean position and then decrease. This increase is mainly due to the rapid decrease of the streamwise velocity of the vortex and partly due to the radial gradient of the streamwise velocity caused by a velocity deficit. As the vortex decays moving downstream, turbulence intensity also decrease gradually.
-
The flow at the impeller exit is important to validate engineering design and numerical analysis of pumps. However, it is not easy to measure the flow at the impeller exit and evaluate the impeller performance since there is usually strong interaction between the impeller and the volute casing. We installed axisymmetric collector instead of the volute casing, so there is no interaction between the impeller and casing. A 3-hole Cobra probe is used to investigate the flow at impeller exit and vaneless diffuser region for design and on design flow rate. For a single suction centrifugal pump of low specific speed, the flow field such as velocity, flow angle, and total pressure are measured by traversing the probe across the vaneless diffuser. These data can be used for performance prediction, desist and numerical analysis of pumps.
-
The structural analysis of a reactor coolant pump(RCP) of a nuclear power plant is very important for the safety assessment of the plant. Accurate boundary conditions for the heat transfer coefficient are required for reliable thermal stress analysis of the pump casing, especially in transient operations of the pump since the coolant properties are largely dependent on operational conditions. In the present study, a 3D mixed flow type coolant pump was modeled from the RCP drawings and analyzed in the steady state and number of transient flow conditions by using a commercial code STAR-CD. From the result of the computation, it is seem that the average heat transfer coefficients for the cases considered are found to be the suggested values of the manufacturer, Westinghouse Energy System. The unevenness in local heat transfer coefficients, however, is found to be considerable so that the use of average heat transfer coefficients in all boundaries might not give reliable thermal stresses.
-
In this research, the performance predictions of the submersible mixer were investigated. The variation of the performance characteristics by changing the impeller design parameters were discussed through the flow calculation results by using a commercial program, FLUENT. The performance of the submersible mixers is related to the velocity diffusion profiles downstream of the impeller and also the required input motor power to mix the fluid. In this study, the various design parameters such as the number of blade, the hub and tip diameters, the impeller blade profiles and revolution speed of the blades were taken for the fixed values. The blade sweep direction, the chord length distribution along with the radius of the blade and the inlet blade angle were changed to make different testing models. The flow calculation results show the effect of the changed design parameters on the performance of the submersible mixers and also give some helpful information for designing more efficient submersible mixers.
-
The flow characteristics of double suction pump are investigated by numerically Calculations are performed by using SIMPLE algorithm at the design and off-design points. Symmetric nature of flow fields in blade channels is discovered at design point, but asymmetirc effects are discovered at the off-design point. Numerical results show that the formation of secondary flow in volute of double suction pump shows different trends when compared with the case of single suction pump. Also results show that double vortices are formed in the volute cross section.
-
The present experimental study is aimed to investigate the flow characteristics of the high-speed flow field within hot-water pump by PIV(Particle Image Velocimetry). As multi-point simultaneous velocity acquisition, 2-D PIV system based upon the two-frame gray-level cross correlation method is adopted using PC frame-grabber and simple video system. Gated image intensifier CCD Camera to cope with illumination problem is arranged for accurate PIV measurement of high-speed complex flow. The velocity vector distribution, velocity profile, and kinetic energy are represented quantitatively at the full-scale region for the deeper understanding of the unsteady flow characteristics in a pump.
-
Currently under development is an airborne auxiliary power unit with 100 Kw equivalent power, which is composed of a centrifugal compressor, a reverse annular combustor, and a radial turbine. Air-foil bearings are used in this power unit to eliminate the oil supplying system, which can reduce the system complexity and weight. The high speed generator is adopted as an electric power generation and engine starting system, which can also eliminate the reduction gear system. Not only electric power but also pneumatic power is provided by bleeding the compressed air This power unit is aimed for the multi-purpose use such as a primary power unit In the army weapon system, an auxiliary power and environmental control unit in a next-generation tank, and a smoke generating unit.
-
The present study investigates numerically particle laden flow through compressor cascades and a rocket nozzle. Engines are affected by various particles which are suspending in the atmosphere. Especially in the case of aircraft aviating in volcanic, industrial and desert region including many particles, each components of engine system are damaged severely. That damage modes are erosion of compressor blading and rotor path components, partial or total blockage of cooling passage and engine control system degradation. Numerical prediction and experimental data, erosion rates are predicted for two materials - ceramic, soft metal - on compressor blade surface. Aluminum oxide (
$Al_2O_3$ ) Particles included in solid rocket propelant make ablative the rocket motor nozzle and imped the expansion processes of propulsion. By the definition of particle deposition efficiency, characteristics of particles impaction are considered quantitatively Stoke number is defined over the various particle sizes and particle trajectories are treated by Lagrangian approach. Particle stability is considered by definition of Weber number in rocket nozzle and particle breakup and evaporation is simulated in a rocket nozzle. -
This paper is concerned with the viscous interaction between rotor and stator The viscous interaction is caused by wakes from upstream blades. The cascade was composed with five blades and cylinders were placed to make wakes and their location was about 50 percent of blade chord upstream. The location of cylinders were varied in the cascade axis with 0, 20, 40, 60 and 80 percent of pitch length. The velocity distribution in the cascade passage were measured using single slanted hot-wire and the ones in the boundary layer using boundary probe. As a result, wakes decay more rapidly at suction surface and more slowly at pressure surface. And the measurement of momentum thickness of cascade shows that the momentum thickness is larger near the blade surface. From measurement of blade boundary layer, turbulent intensity is also larger near the blade surface because wakes collide the boundary layer And wakes make boundary layer thickness smaller and delay flow separation.
-
The necessity of diagnosis of the rotating machinery which is widely used in the industry is increasing. Many research has been conducted to manipulate field vibration signal data for diagnosing the fault of designated machinery. As the pattern recognition tool of that signal, neural network which use usually back-propagation algorithm was used in the diagnosis of rotating machinery. In this paper, self-organizing feature map(SOFM) which is unsupervised learning algorithm is used in the abnormal vibration diagnosis of rotating machinery and then learning vector quantization(LVQ) which is supervised teaming algorithm is used to improve the quality of the classifier decision regions.
-
This paper presents the artificial life algorithm which is remarkable in the area of engineering for optimum design. As artificial life organisms have a sensing system, they can find the resource which they want to find and metabolize it. And the characteristics of artificial life are emergence and dynamical interacting with environment. In other words, the micro interaction with each other in the artificial life's group results in emergent colonization in the whole system. In this paper, therefore, artificial life algorithm by using above characteristics is employed into functions optimization. The effectiveness of this proposed algorithm is verified through the numerical test of single and multi objective functions. The numerical tests also show that the proposed algorithm is superior to genetic algorithm and immune algorithm for the Multi-peak function. And artificial life algorithm is also applied to optimum design of high-speed, short journal bearings and verified through the numerical test.
-
The biggest challenge facing today manufacturing industry is better quality and high productivity. From an economic point of view, productivity is the most important parameter, as high productivity will reduce the cost. However, the customers of day are not only cost concerned, but also quality conscious. So high accuracy levels should also be achieved in the manufacturing process. This paper reports the development of a automatic design system based on AutoCAD program. 1'his work is composed of three section that are design of top down menu, impeller and casing for pump programed by AutoLISP language and runned Windows system. The developed system ultimately generates the design for a pump through AutoCAD program. In the design of the pump, it needs about 23 hours with an expert, but this system can be only 80 seconds without an expert.