Language is an essential tool for verbal and emotional communication among human beings, enabling them to engage in social interactions. Although a majority of hearing-impaired people can speak; however, they are unable to receive feedback on their pronunciation most of them can speak. However, they do not receive feedback on their pronunciation. This results in impaired communication owing to incorrect pronunciation, which causes difficulties in their social interactions. If hearing-impaired people could receive continuous feedback on their pronunciation and phonation through lip-reading training, they could communicate more effectively with people without hearing disabilities, anytime and anywhere, without the use of sign language. In this study, the mouth area is detected from videos of learners speaking monosyllabic words. The grayscale information of the detected mouth area is used to estimate a velocity vector using Optical Flow. This information is then quantified as feature values to classify vowels. Subsequently, a system is proposed that classifies monosyllables by algebraic computation of geometric feature values of lips using the characteristics of articulatory phonation. Additionally, the system provides feedback by evaluating the comparison between the information which is obtained from the sample categories and experimental results.