최근 단백질 및 도메인과 관련된 방대한 양의 데이타들이 인터넷상에 공표되고 축적됨에 따라, 단백질간의 상호작용에 대한 예측 시스템의 필요성이 제기되고 있다. 본 논문에서는 이러한 데이타를 이용하여 계산적으로 도메인 조합 쌍에 기반하여 단백질의 상호작용 확률을 예측하는 새로운 단백질 상호작용 예측 시스템을 제안한다. 제안된 예측 시스템에서는 기존의 도메인 쌍(domain pair)의 제약성을 극복하기 위하여 도메인 조합(domain combination)과 도메인 조합 쌍(domain combination pair)의 개념이 새롭게 도입하였다. 그리고 도메인 조합 쌍(domain combination pair 또는 dc-pair)을 단백질 상호작용의 기본 단위로 간주하고 예측을 시도한다. 예측 시스템은 크게 예측 준비 과정과 서비스 과정으로 구성되어 있다. 예측 준비 과정에서는 상호작용이 있는 것으로 알려진 단백질 쌍 집합과 상호작용이 없는 것으로 추정되는 단백질 도메인 쌍 집합으로부터 각각 도메인 조합 정보와 그 출현 빈도를 추출한다. 추출된 정보들은 출현 확률 배열(Appearance Probability Matrix 또는 AP matrix)로 불리는 배열 구조에 저장된다. 논문에서는 출현 확률 배열에 기반을 두어, 단백질-단백질 상호작용을 예측하는 확률식 PIP(Primary Interaction Probability)를 고안하고, 고안된 확률식을 이용하여, 상호작용이 있는 것으로 알려진 단백질 쌍 집합과 상호작용이 없는 것으로 추정되는 단백질 도메인 쌍 집합의 확률 값 분포를 생성시킨다. 예측서비스 과정에서는 예측 준비 과정에서 얻어진 분포와 확률식을 이용하여 임의의 단백질 쌍의 상호작용 확률을 계산한다. 예측 모델의 유효성은 효모(yeast)에서 상호작용이 있는 것으로 보고된 단백질 쌍 집합과 상호작용이 없는 것으로 추정되는 단백질 쌍 집합을 이용하여 검증하였다. DIP(Database of Inter-acting Proteins)의 상호작용이 있는 것으로 알려진 효모 단백질 쌍 집합의 80%를 학습 집단으로 사용했을 때, 86%의 sensitivity와 56%의 specificity를 나타내어, 도메인을 기반으로 한 기존의 예측 시스템에 비해서 우월한 예측 정확도를 보여주었다. 이와 같은 예측 정확도의 개선은 본 예측 시스템이 상호작용의 기본 단위로 dc-pair를 채택한 점과 분류를 위하여 새롭게 고안하여 사용한 PIP식이 유효했던 것으로 판단된다.