To evaluate the impact of effluents from land-based fish farms on the coastal ocean of Wando, Korea, we analyzed inorganic nutrients, particulate organic carbon (POC), dissolved organic carbon (DOC), and colored dissolved organic matter (CDOM) in the effluent and influent of land-based fish farms during the summer (July) of 2021. The average concentrations of nutrients (Dissolved inorganic nitrogen, phosphorus, and silicate; DIN, DIP, and DSi, respectively) in the effluents of this study area were 17±3.7 μM, 1.4±0.7 μM, and 14±1.6 μM, respectively. The average concentrations of POC and DOC were 37±22 μM and 81±13 μM, respectively, with POC accounting for about 30% for total organic carbon in effluents. The Reduced Dissolved Inorganic Nitrogen/Total Dissolved Inorganic Nitrogen ratio (0.7), potential short-period index, indicates that the discharge of nutrients excreted by the fish and unconsumed feed into coastal water results in such nutrients being deposited and accumulated in the sediment. Subsequently, this continuous accumulation triggers the release of ammonium ions during organic matter decomposition, and the ammonium-enriched waters that encroach on fish farms as influent seem to be due to the diffusion of high concentrations of ammonium from bottom sediment. Furthermore, we used fluorescence indices to examine the characteristics of organic matter sources, obtaining mean values of 1.54±0.19, 1.06±0.06, and 1.56±0.06 for the humification index, biological index, and fluorescence index, respectively, in the effluent. These results indicate that the organic matters had an autochthonous origin that resulted from microbial decomposition, and such organic matters were rapidly generated and removed by biological activity, likely supplied from the sediment. Our results suggest that the effluent from land-based fish farms could be a potential source of deoxygenation occurrence in coastal areas.