제12권2호
-
A computer program, named NEO-PCBRG, for the analysis and design of prestressed con-crete(PSC) bridges was developed using the finite element method. NEO-PCBRG can predict the response of PSC bridges throughout the various stages of construction and service. NEO-PCBRG has both pre- and post-processing capabilities. Pre-processing refers to all the neces- sary steps required to prepare a virtual prototype, more commonly termed a varied model for analysis. Post-processing here stands for the step in which the results from the analysis are reviewed and interpreted. In order to allow for the easy and convenient execution of the entire procedure, NEO-PCBRG was developed using computer graphics in the Visual Basic pro- gramming language. In conclusion, this study presents a new software architecture for analy-sis using the user-oriented design technique.
-
Probabilistic Analysis of Reinforced Concrete Beam and Slab Deflections Using Monte Carlo SimulationIt is not easy to correctly predict deflections of reinforced concrete beams and one-way slabs due to the variability of parameters involved in the calculation of deflections. Monte Carlo simulation is used to assess the variability of deflections with known statistical data and probability distributions of variables. A deterministic deflection value is obtained using the layered beam model based on the finite element approach in which a finite element is divided into a number of layers over the depth. The model takes into account nonlinear effects such as cracking, creep and shrinkage. Statistical parameters were obtained from the literature. For the assessment of variability of deflections, 12 cases of one-way slabs and T-beams are designed on the basis of ultimate moment capacity. Several results of a probabilistic study are presented to indicate general trends indicated by results and demonstrate the effect of certain design parameters on the variability of deflections. From simulation results, the variability of deflections relies primarily on the ratio of applied moment to cracking moment and the corre-sponding reinforcement ratio.
-
This paper presents behavior of concrete pavement at transverse joint subject to static test load. The test was conducted on 1/10 scale model in the laboratory. Load transfer across the crack is developed either by the interlocking action of the aggregate particles at the faces of the joint or by a combination of aggregate interlock and mechanical devices such as dowel bars. In this study, significant three variables considered to the performance of joints were selected. : (a)diameter of dowel bars(2.5mm, 3.0mm, 4.0mm), (b)presence or absence of dowel bars, (c)aggregate types(crushed stone, round stone). Experimental results were analyzed to find relationships among displacement of discontinuous plane at jointed slab, load transfer efficiency and joint opening, etc. Displacement of discontinuous plane at joint was decreased according to the increase of dowel bar diameter. In addition, it is found that model slabs made using crushed stone had better load transfer characteristics by aggregate interlock than model slabs made using similarly graded round stone. Displacement of discontinuous plane was increased according to the increase of loading. In addition, it was decreased as dowel diameter(2.5mm, 3.0mm, 4.0mm) was increased. In the case of slab without dowel bars, displacement of discontinuous plane was greatly increased and load transfer effciency of slab applied crushed stone was shown 30 percent greater than round stone. In addition, load transfer efficiency of slabs, which were made using crushed and round stone without dowel bars, was decreased to 20 percent and 30 percent, respectively as it was compared with slabs made us-ing dowel bars.
-
The extensive usage of pretensioned prestressed concrete component in modem construe- tion as structural members mandates precise understanding of its mechanism. Especially, an adequate transfer of prestressing force from steel tendons to concrete around the end regions of the member is a critical issue. Due to the importance of the topic, several investigators have formulated equations modeling the transfer bond length based on various bonding mechanism between steel and concrete. However, the existing models are still inadequate in predicting the bond development in pretensioned prestressed concrete members. Therefore, this study presents a model of transfer bond length based on rational theory that can simulate experimental results. The model is developed into solid mechanics based structural analysis computer program. The program is validated by comparing the analysis results with experimental results of bond stress distribution, concrete strain profiles, and transfer length in pretensioned prestressed concrete members. The proposed analytical procedure in this study can be utilized as a useful tool for realistic evaluation of transfer length in pretensioned prestressed concrete members.
-
Precast R.C. slabs are being used widely for the construction of bridge structures due to their simplicity in construction processes. However, one of the disadvantages in precast R.C. slabs is the existence of transverse joints between two precast slabs. The transverse joints are structurally fragile and the task of strengthening the joints is difficult one due to their structural discontinuity. The aim of this study was to improve the behavior of transverse joints between precast R.C. slabs by introducing prestress with external cables. Three steel-concrete composite bridge specimens, which were prestressed with the external cables anchored on steel girders, were fabricated in the laboratory. Both pretension and post-tension methods were applied to introduce prestressing on the concrete slab with a straight tendon arrangement. Static tests were conducted at service load and ultimate load test was performed to evaluate punching shear capacity of the transverse joint. In this paper, two prestressing methods were tested and their effects were evaluated with respect to the elastic behavior and ultimate loading capacity of the transverse joints.
-
This paper proposes a mechanical model to describe the load-deformation responses of the reinforced concrete plate members under service load state. An Analytical method is introduced on the basis of the rotating crack model which considers equilibrium, compatibility conditions, load-strain relationship of cracked member, and constitutive law for materials. The tension stiffening effect in reinforced concrete structures is taken into account by the average tensile stress-strain relationship from the load-strain relationship for the cracked member and the constitutive law for material. The strain compatibility is used to find out the crack direction because the crack direction is an unknown variable in the equilibrium and compatibility conditions. The proposed theory is verified by the numerous experimental data such as the crack direction, moment-steel strain relationship, moment-crack width relationship. The present paper can provide some basis for the provision of the definition of serviceability for plate structures of which reinforcements are deviated from the principal stresses, because the present code defines the serviceability by the deflection, crack control, vibration and fatigue basically for the skeletal members. The proposed theory is applicable to predict the service load state behavior of a variety of reinforced concrete plate structures such as skew slab bridges, the deck of skew girder bridges.
-
A new form of construction utilizing structural steel as the boundary elements in ductile flexural concrete walls is proposed to solve the bar congestion problems in such a heavily reinforced region, while maintaining the ductility and energy absorption capacity comparable to their traditional form. Two wall specimens containing rectangular hollow structural sections (HSS) and channels at their ends respectively, and one companion standard reinforced concrete wall specimen with concentrated end reinforcement were constructed and tested under reversed cyclic loading to evaluate the construction process as well as the structural performance. Initially, all three specimens were chosen and detailed with some caution to have approximately the same flexural capacity without change of the original shape and dimension of a rectangular cross section correction. Analysis and comparison of test results indicated that the reversed cyclic responses of three walls showed similar hysteretic properties, but in those with steel boundaries, local buckling of the corresponding steel webs and flanges following significant yielding was a dominant factor to determine the hysteretic response. The monotonic and cyclic responses predicted based on a sectional approach was also presented and found to be in good agreement with measured results. Design recommendations considering local instability of the structural steel elements and the interaction between steel chords and a concrete web member in such a composite wall are presented.
-
Potentially significant mechanical improvements in tension can be achieved by the incorporation of randomly distributed, short discrete fibers in concrete. The improvements due to the incorporation fibers significantly influence the composite stress - strain (
$\sigma$ -$\varepsilon$ ) characteristics. In general incorporating fibers in a plain concrete has relatively small effect on its precracking behavior. It, however, alters its post-cracking behavior quite significantly, resulting in greatly improved ductility, crack controls, and energy absorption capacity (or toughness). Therefore, a thorough understanding the complete tensile stress - strain ($\sigma$ -$\varepsilon$ ) response of fiber reinforced concrete is necessary for proper analysis while using structural components made with fiber reinforced concrete. Direct tensile stress applied to a specimen is in principle the simplest configuration for determining the tensile response of concrete. However, problems associated with testing brittle materials in tension include (i) the problem related to gripping of the specimen and (ii) the problem of ensuring centric loading. Routinely, indirect tension tests for plain concrete, flexural and split-cylinder tests, have been used as simpler alternatives to direct uniaxial tension test. They are assumed to suitable for fiber reinforced concrete since typically such composites comprise 98% by volume of plain concrete. Clearly since the post-cracking characteristics are significantly influenced by the reinforcing parameters and interface characteristics, it would be fundamentally incorrect to use indirect tensile tests for determining the tensile properties of fiber reinforced concrete. The present investigation represents a systematic look at the failure and toughening mechanisms and macroscopic stress - strain ($\sigma$ -$\varepsilon$ ) characteristics of fiber reinforced concrete in the uniaxial tension test. Results from an experimental parametric study involving used fiber quantity, type, and mechanical properties in the uniaxial tension test are presented and discussed.