In this paper, we analyze the applicability of a general optimization algorithm to a database optimization problem. The index selection problem Is the problem to choose a set of indexes for a database in a way that the cost to process queries in the given workload is minimized subject to a given storage space restriction for storing indexes. The problem is well known in database research fields, and many optimization and/or heuristic algorithms have been proposed. Our work differs from previous research in that we formalize the problem in the form of non-linear Integer Programming model, and investigate the feasibility and applicability of a general purpose optimization algorithm, called OPBDP, through experiments. We implemented algorithms to generate workload data sets and problem instances for the experiment. The OPBDP algorithm, which is a non-linear 0-1 Integer Programming problem solver based on Davis-Putnam method, worked generally well for our problem formulation. The experiment result showed various performance characteristics depending on the types of decision variables, variable navigation methods and ocher algorithm parameters, and indicates the need of further study on the exploitation of the general purpose optimization techniques for the optimization problems in database area.