Ha, Gyeong-Ho;Hong, Jeong-Pyo;Kim, Gyu-Tak;Gang, Do-Hyeon
77
This paper deals with the design of a touch free eddy-current brake for high speed transportation systems by using 2-dimensional Finite Element Method (2-D FEM). The eddy current brake systems have to equipped with maximum braking force and deceleration at the given volume or mass, high braking force at small rate, attraction forces as small as possible and stable construction. The parameters, such as the number of pole, electric ampere-turns and slot width have influence on these braking characteristics. For the magnet to satisfy above-mentioned performance in high speed, the braking performance according to variation of the parameters are analyzed by the 2-D FEM. In addition, the magnet stack width is determined from equivalent stack width that is calculated by solution of the Field with scalar potential. From these results, the magnet of optimized configuration with maximum braking force and minimum attraction force is designed by the process of detail design.