유비쿼터스 컴퓨팅에 대한 관심이 증가함에 따라, 이미지 코드도 다양한 영역에서 관심을 끌고 있다. 유비쿼터스 컴퓨팅에서 이미지 코드가 중요한 이유는 비용면과 함께 많은 영역에서 RFID(radio frequency identification)를 보완하거나 대체할 수 있기 때문이다. 그렇지만, 칼라의 왜곡이 심하여 정확한 칼라를 읽는데 어려움이 있기 때문에, 그 응용은 아직까지는 매우 제한적이다. 이 논문에서는, 칼라의 색상 및 채도 값을 이용하여 자동으로 이미지 코드를 찾아내는 것을 포함하여, 이미지 코드 인식에 관한 효율적인 방법을 제시한다. 이 논문의 실험에서는 현재 상용되고 있는 것들 중 가장 실용적이라고 판단되는 디자인을 사용하였다. 이 이미지 코드에는 여섯 개의 안전 칼라, 즉, R, G, B, C, M, Y가 사용되었다. 실험 영상들로는 크기가 $2464{\times}1632$인 72개의 트루 칼라 필드 영상들을 사용하였다. 히스토그램에 의해 칼라를 보정한 경우, 코드 검출 정확도는 96%, 검출된 코드에 대한 칼라 분류 정확도는 91.28% 이었다. 이미지 코드를 검출 및 인식하는데 2 GHz P4 PC에서 약 5초가 소요되었다.