The Cobey method and the modified Cobey method are most commonly used in clinical practice. Therefore, the purpose of this study was to investigate the radiological differences between Cobey and modified Cobey and provide radiographic information about changes of hindfoot image with X-ray entrance center and tube angle change in modified Cobey. This study was performed on foot and ankle phantom. First, for image comparison of Cobey and modified Cobey, the images obtained by applying the same X-ray entrance center to the ankle joint were compared and analyzed. Second, in the modified Cobey, the X-ray entrance center is set as ankle joint and lateral malleolus. The X-ray tube angle was varied from $10^{\circ}$ to $40^{\circ}$ at $5^{\circ}$ intervals for each X-ray entrance center. The images obtained by varying the X-ray tube angle from $10^{\circ}$ to $40^{\circ}$ at intervals of $5^{\circ}$ for each X-ray entrance center were compared and analyzed. The irradiation conditions were the same with 110 kVp, 200 mA, 10 ms, and 110 cm of source - image receptor distance (SID). Image evaluation was performed by two radiologists. Measurements were made on the lateral point, middle point, and calcaneus width based on a hypothetical line parallel to the calcaneal tuberosity. Data were analyzed by using descriptive statistics as the mean of the distance to each measurement location. The modified Cobey was longer than the Cobey by an average of 3 to 4 mm lateral and medial points, and the calcaneus width was similar (ICC = 0.939). In modified Cobey method, when the X-ray entrance center is ankle joint, the lateral point is about 3 mm and the medial point is about 4.3 mm longer than lateral malleolus. Also, when the X-ray tube angle is more than $20^{\circ}$, the degree of distortion is large. The ICCs for the lateral, medial point, and calcaneus width were 0.998, 0.961, and 0.997, respectively, as the X-ray entrance center and tube angle were changed. There was no significant difference between Modified Cobey and Cobey. Modified Cobey showed no need to compensate the $20^{\circ}$ detector angle of the Cobey. In addition, we suggest that tube angle should be limited within $20^{\circ}$ when modified Cobey is performed.