Acknowledgement
This work was supported by the Bio & Medical Technology Development Program [grant number 2018M3A9H3024746] of the National Research Foundation funded by the Ministry of Science and ICT of the Republic of Korea and the Korea Research Institute of Bioscience and Biotechnology (KRIBB) Research Initiative Program (KGM5402423).
References
- Korpela K, de Vos WM. 2018. Early life colonization of the human gut: microbes matter everywhere. Curr. Opin. Microbiol. 44: 70-78.
- Korpela K, Helve O, Kolho KL, Saisto T, Skogberg K, Dikareva E, et al. 2020. Maternal fecal microbiota transplantation in cesarean-born infants rapidly restores normal gut microbial development: a proof-of-concept study. Cell 183: 324-334 e325.
- Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, et al. 2017. Strains, functions and dynamics in the expanded human microbiome project. Nature 550: 61-66.
- Lynch SV, Pedersen O. 2016. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375: 2369-2379.
- Fan Y, Pedersen O. 2021. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19: 55-71.
- Selvakumar R, Kumar I, Onajobi GJ, Yu Y, Wilson CJ. 2024. Engineering living therapeutics and diagnostics: a new frontier in human health. Curr. Opin. Syst. Biol. 37: 100484.
- Kim K, Kang M, Cho BK. 2023. Systems and synthetic biology-driven engineering of live bacterial therapeutics. Front. Bioeng. Biotechnol. 11: 1267378.
- Pedrolli DB, Ribeiro NV, Squizato PN, de Jesus VN, Cozetto DA, Team AQAUai. 2019. Engineering microbial living therapeutics: the synthetic biology toolbox. Trends Biotechnol. 37: 100-115.
- Zhao N, Song Y, Xie X, Zhu Z, Duan C, Nong C, et al. 2023. Synthetic biology-inspired cell engineering in diagnosis, treatment, and drug development. Signal. Transduct. Target. Ther. 8: 112.
- Alexander LM, van Pijkeren JP. 2023. Modes of therapeutic delivery in synthetic microbiology. Trends Microbiol. 31: 197-211.
- Mimee M, Tucker AC, Voigt CA, Lu TK. 2015. Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Syst. 1: 62-71.
- Zou ZP, Du Y, Fang TT, Zhou Y, Ye BC. 2023. Biomarker-responsive engineered probiotic diagnoses, records, and ameliorates inflammatory bowel disease in mice. Cell Host Microbe 31: 199-212 e195.
- Steidler L, Neirynck S, Huyghebaert N, Snoeck V, Vermeire A, Goddeeris B, et al. 2003. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat. Biotechnol. 21: 785-789.
- Luo X, Song H, Yang J, Han B, Feng Y, Leng Y, Chen Z. 2020. Encapsulation of Escherichia coli strain Nissle 1917 in a chitosan-alginate matrix by combining layer-by-layer assembly with CaCl(2) cross-linking for an effective treatment of inflammatory bowel diseases. Colloids Surf. B Biointerfaces 189: 110818.
- Kaplan GG. 2015. The global burden of IBD: from 2015 to 2025. Nat. Rev. Gastroenterol. Hepatol. 12: 720-727.
- Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, et al. 2017. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390: 2769-2778.
- Ng SC. 2016. Emerging trends of inflammatory bowel disease in Asia. Gastroenterol. Hepatol. 12: 193-196.
- Praveschotinunt P, Duraj-Thatte AM, Gelfat I, Bahl F, Chou DB, Joshi NS. 2019. Engineered E. coli Nissle 1917 for the delivery of matrix-tethered therapeutic domains to the gut. Nat Commun. 10: 5580.
- Yu M, Kim J, Ahn JH, Moon Y. 2019. Nononcogenic restoration of the intestinal barrier by E. coli-delivered human EGF. JCI Insight. 4: e125166.
- Lynch JP, Gonzalez-Prieto C, Reeves AZ, Bae S, Powale U, Godbole NP, et al. 2023. Engineered Escherichia coli for the in situ secretion of therapeutic nanobodies in the gut. Cell Host Microbe 31: 634-649 e638.
- Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, et al. 2000. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289: 1352-1355.
- Sasaoka T, Ito M, Yamashita J, Nakajima K, Tanaka I, Narita M, et al. 2011. Treatment with IL-27 attenuates experimental colitis through the suppression of the development of IL-17-producing T helper cells. Am. J. Physiol. Gastrointest. Liver Physiol. 300: G568-576.
- Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA. 2008. Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity 29: 947-957.
- Hanson ML, Hixon JA, Li W, Felber BK, Anver MR, Stewart CA, et al. 2014. Oral delivery of IL-27 recombinant bacteria attenuates immune colitis in mice. Gastroenterology 146: 210-221 e213.
- Ortiz-Velez L, Goodwin A, Schaefer L, Britton RA. 2020. Challenges and pitfalls in the engineering of human lnterleukin 22 (hIL-22) secreting Lactobacillus reuteri. Front. Bioeng. Biotechnol. 8: 543.
- Duar RM, Clark KJ, Patil PB, Hernandez C, Bruning S, Burkey TE, et al. 2015. Identification and characterization of intestinal lactobacilli strains capable of degrading immunotoxic peptides present in gluten. J. Appl. Microbiol. 118: 515-527.
- Farrar MD, Whitehead TR, Lan J, Dilger P, Thorpe R, Holland KT, Carding SR. 2005. Engineering of the gut commensal bacterium Bacteroides ovatus to produce and secrete biologically active murine interleukin-2 in response to xylan. J. Appl. Microbiol. 98: 1191-1197.
- Hamady ZZR, Farrar MD, Whitehead TR, Holland KT, Lodge JPA, Carding SR. 2008. Identification and use of the putative Bacteroides ovatus xylanase promoter for the inducible production of recombinant human proteins. Microbiology 154: 3165-3174.
- Hamady ZZ, Scott N, Farrar MD, Wadhwa M, Dilger P, Whitehead TR, et al. 2011. Treatment of colitis with a commensal gut bacterium engineered to secrete human TGF-beta1 under the control of dietary xylan 1. Inflamm. Bowel Dis. 17: 1925-1935.
- Hamady ZZ, Scott N, Farrar MD, Lodge JP, Holland KT, Whitehead T, et al. 2010. Xylan-regulated delivery of human keratinocyte growth factor-2 to the inflamed colon by the human anaerobic commensal bacterium Bacteroides ovatus. Gut 59: 461-469.
- Kim TH, Ju K, Kim SK, Woo S-G, Lee J-S, Lee C-H, et al. 2024. Novel signal peptides and episomal plasmid system for enhanced protein secretion in engineered Bacteroides species. ACS Synth. Biol. 13: 648-657.
- Liu M, Li S, Zhang Q, Xu Z, Wang J, Sun H. 2018. Oral engineered Bifidobacterium longum expressing rhMnSOD to suppress experimental colitis. Int. Immunopharmacol. 57: 25-32.
- Woo S-G, Moon S-J, Kim SK, Kim TH, Lim HS, Yeon G-H, et al. 2020. A designed whole-cell biosensor for live diagnosis of gut inflammation through nitrate sensing. Biosens. Bioelectron. 168: 112523.
- Sandborn WJ, Loftus EV. 2004. Balancing the risks and benefits of infliximab in the treatment of inflammatory bowel disease. Gut 53: 780-782.
- Raman V, Deshpande CP, Khanduja S, Howell LM, Van Dessel N, Forbes NS. 2023. Build-a-bug workshop: using microbial-host interactions and synthetic biology tools to create cancer therapies. Cell Host Microbe 31: 1574-1592.
- St Jean AT, Swofford CA, Panteli JT, Brentzel ZJ, Forbes NS. 2014. Bacterial delivery of Staphylococcus aureus alpha-hemolysin causes regression and necrosis in murine tumors. Mol. Ther. 22: 1266-1274.
- Lim D, Jung WC, Jeong JH, Song M. 2020. Targeted delivery of the mitochondrial target domain of noxa to tumor rissue via synthetic secretion system in E. coli. Front. Bioeng. Biotechnol. 8: 840.
- Leventhal DS, Sokolovska A, Li N, Plescia C, Kolodziej SA, Gallant CW, et al. 2020. Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nat. Commun. 11: 2739.
- Canale FP, Basso C, Antonini G, Perotti M, Li N, Sokolovska A, et al. 2021. Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature 598: 662-666.
- Chen X, Li P, Luo B, Song C, Wu M, Yao Y, et al. 2024. Surface mineralization of engineered bacterial outer membrane vesicles to enhance tumor photothermal/immunotherapy. ACS Nano 18: 1357-1370.
- An BC, Ryu Y, Yoon YS, Choi O, Park HJ, Kim TY, et al. 2019. Colorectal cancer therapy using a Pediococcus pentosaceus SL4 drug delivery system secreting lactic acid bacteria-derived protein p8. Mol. Cells 42: 755-762.
- Chung Y, Ryu Y, An BC, Yoon YS, Choi O, Kim TY, et al. 2021. A synthetic probiotic engineered for colorectal cancer therapy modulates gut microbiota. Microbiome 9: 122.
- Zhou T, Wu J, Tang H, Liu D, Jeon BH, Jin W, et al. 2024. Enhancing tumor-specific recognition of programmable synthetic bacterial consortium for precision therapy of colorectal cancer. NPJ Biofilms Microbiome 10: 6.
- Ho CL, Tan HQ, Chua KJ, Kang A, Lim KH, Ling KL, et al. 2018. Engineered commensal microbes for diet-mediated colorectal-cancer chemoprevention. Nat. Biomed. Eng. 2: 27-37.
- Gopalan B, Shanker M, Chada S, Ramesh R. 2007. MDA-7/IL-24 suppresses human ovarian carcinoma growth in vitro and in vivo. Mol. Cancer 6: 11.
- Bhutia SK, Das SK, Kegelman TP, Azab B, Dash R, Su ZZ, et al. 2012. mda-7/IL-24 differentially regulates soluble and nuclear clusterin in prostate cancer. J. Cell. Physiol. 227: 1805-1813.
- Bhutia SK, Das SK, Azab B, Menezes ME, Dent P, Wang XY, et al. 2013. Targeting breast cancer-initiating/stem cells with melanoma differentiation-associated gene-7/interleukin-24. Int. J. Cancer 133: 2726-2736.
- Dash R, Bhoopathi P, Das SK, Sarkar S, Emdad L, Dasgupta S, et al. 2014. Novel mechanism of MDA-7/IL-24 cancer-specific apoptosis through SARI induction. Cancer Res. 74: 563-574.
- Wang L, Vuletic I, Deng D, Crielaard W, Xie Z, Zhou K, et al. 2017. Bifidobacterium breve as a delivery vector of IL-24 gene therapy for head and neck squamous cell carcinoma in vivo. Gene Ther. 24: 699-705.
- Chowdhury S, Castro S, Coker C, Hinchliffe TE, Arpaia N, Danino T. 2019. Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat. Med. 25: 1057-1063.
- Gurbatri CR, Lia I, Vincent R, Coker C, Castro S, Treuting PM, et al. 2020. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Sci. Transl. Med. 12: eaax0876.
- Gurbatri CR, Radford GA, Vrbanac L, Im J, Thomas EM, Coker C, et al. 2024. Engineering tumor-colonizing E. coli Nissle 1917 for detection and treatment of colorectal neoplasia. Nat. Commun. 15: 646.
- Grundy SM, Brewer HB, Jr., Cleeman JI, Smith SC, Jr., Lenfant C, American Heart A, et al. 2004. Definition of metabolic syndrome: report of the national heart, lung, and blood institute/American heart association conference on scientific issues related to definition. Circ. 109: 433-438.
- Wang L, Chen T, Wang H, Wu X, Cao Q, Wen K, et al. 2021. Engineered Bacteria of MG1363-pMG36e-GLP-1 attenuated obesity-induced by high fat diet in mice. Front. Cell. Infect. Microbiol. 11: 595575.
- Torres-Fuentes C, Schellekens H, Dinan TG, Cryan JF. 2017. The microbiota-gut-brain axis in obesity. Lancet Gastroenterol. Hepatol. 2: 747-756.
- European Association for the Study of the L, European Association for the Study of D, European Association for the Study of O. 2016. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 64: 1388-1402.
- Rehm J, Samokhvalov AV, Shield KD. 2013. Global burden of alcoholic liver diseases. J. Hepatol. 59: 160-168.
- Wang X, Ota N, Manzanillo P, Kates L, Zavala-Solorio J, Eidenschenk C, et al. 2014. Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature 514: 237-241.
- Pan CX, Tang J, Wang XY, Wu FR, Ge JF, Chen FH. 2014. Role of interleukin-22 in liver diseases. Inflamm. Res. 63: 519-525.
- Oh JH, Schueler KL, Stapleton DS, Alexander LM, Yen CE, Keller MP, et al. 2020. Secretion of recombinant interleukin-22 by engineered Lactobacillus reuteri reduces fatty liver disease in a mouse model of diet-induced obesity. mSphere 5: e0018320.
- Hendrikx T, Duan Y, Wang Y, Oh JH, Alexander LM, Huang W, et al. 2019. Bacteria engineered to produce IL-22 in intestine induce expression of REG3G to reduce ethanol-induced liver disease in mice. Gut 68: 1504-1515.
- Takiishi T, Cook DP, Korf H, Sebastiani G, Mancarella F, Cunha JP, et al. 2017. Reversal of diabetes in NOD mice by clinical-grade proinsulin and IL-10-secreting Lactococcus lactis in combination with low-dose anti-CD3 depends on the induction of Foxp3-positive T cells. Diabetes 66: 448-459.
- Verma A, Xu K, Du T, Zhu P, Liang Z, Liao S, et al. 2019. Expression of human ACE2 in Lactobacillus and beneficial effects in diabetic retinopathy in mice. Mol. Ther. Methods Clin. Dev. 14: 161-170.
- Attalla K, De S, Monga M. 2014. Oxalate content of food: a tangled web. Urology 84: 555-560.
- Lubkowicz D, Horvath NG, James MJ, Cantarella P, Renaud L, Bergeron CG, et al. 2022. An engineered bacterial therapeutic lowers urinary oxalate in preclinical models and in silico simulations of enteric hyperoxaluria. Mol. Syst. Biol. 18: e10539.
- Kurtz CB, Millet YA, Puurunen MK, Perreault M, Charbonneau MR, Isabella VM, et al. 2019. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci. Transl. Med. 11: eaau7975.
- Isabella VM, Ha BN, Castillo MJ, Lubkowicz DJ, Rowe SE, Millet YA, et al. 2018. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat. Biotechnol. 36: 857-864.
- Adolfsen KJ, Callihan I, Monahan CE, Greisen PJ, Spoonamore J, Momin M, et al. 2021. Improvement of a synthetic live bacterial therapeutic for phenylketonuria with biosensor-enabled enzyme engineering. Nat. Commun. 12: 6215.
- Triassi AJ, Fields BD, Monahan CE, Means JM, Park Y, Doosthosseini H, et al. 2023. Redesign of an Escherichia coli Nissle treatment for phenylketonuria using insulated genomic landing pads and genetic circuits to reduce burden. Cell Syst. 14: 512-524 e512.
- Renwick MJ, Brogan DM, Mossialos E. 2016. A systematic review and critical assessment of incentive strategies for discovery and development of novel antibiotics. J. Antibiot. 69: 73-88.
- Fujitani S, Sun HY, Yu VL, Weingarten JA. 2011. Pneumonia due to Pseudomonas aeruginosa: part I: epidemiology, clinical diagnosis, and source. Chest 139: 909-919.
- Saeidi N, Wong CK, Lo TM, Nguyen HX, Ling H, Leong SS, et al. 2011. Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Mol. Syst. Biol. 7: 521.
- Hwang IY, Koh E, Wong A, March JC, Bentley WE, Lee YS, Chang MW. 2017. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat. Commun. 8: 15028.
- Hwang IY, Tan MH, Koh E, Ho CL, Poh CL, Chang MW. 2014. Reprogramming microbes to be pathogen-seeking killers. ACS Synth. Biol. 3: 228-237.
- Ali M, Nelson AR, Lopez AL, Sack DA. 2015. Updated global burden of cholera in endemic countries. PLoS Negl. Trop. Dis. 9: e0003832.
- Duan F, March JC. 2008. Interrupting Vibrio cholerae infection of human epithelial cells with engineered commensal bacterial signaling. Biotechnol. Bioeng. 101: 128-134.
- Duan F, March JC. 2010. Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model. Proc. Natl. Acad. Sci. USA 107: 11260-11264.
- Lopez-Igual R, Bernal-Bayard J, Rodriguez-Paton A, Ghigo JM, Mazel D. 2019. Engineered toxin-intein antimicrobials can selectively target and kill antibiotic-resistant bacteria in mixed populations. Nat. Biotechnol. 37: 755-760.
- Jayaraman P, Holowko MB, Yeoh JW, Lim S, Poh CL. 2017. Repurposing a two-component system-based biosensor for the killing of Vibrio cholerae. ACS Synth. Biol. 6: 1403-1415.
- Gould LH, Walsh KA, Vieira AR, Herman K, Williams IT, Hall AJ, et al. 2013. Surveillance for foodborne disease outbreaks - United States, 1998-2008. MMWR Surveill Summ. 62: 1-34.
- Centers for Disease C, Prevention. 2013. Surveillance for foodborne disease outbreaks--United States, 2009-2010. MMWR Morb. Mortal. Wkly. Rep. 62: 41-47.
- Forkus B, Ritter S, Vlysidis M, Geldart K, Kaznessis YN. 2017. Antimicrobial probiotics reduce Salmonella enterica in Turkey gastrointestinal tracts. Sci. Rep. 7: 40695.
- Palmer JD, Piattelli E, McCormick BA, Silby MW, Brigham CJ, Bucci V. 2018. Engineered probiotic for the inhibition of Salmonella via tetrathionate-induced production of microcin H47. ACS Infect. Dis. 4: 39-45.
- Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC, Gopinath S, et al. 2013. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502: 96-99.
- Koh E, Hwang IY, Lee HL, De Sotto R, Lee JWJ, Lee YS, et al. 2022. Engineering probiotics to inhibit Clostridioides difficile infection by dynamic regulation of intestinal metabolism. Nat. Commun. 13: 3834.
- Geldart KG, Kommineni S, Forbes M, Hayward M, Dunny GM, Salzman NH, Kaznessis YN. 2018. Engineered E. coli Nissle 1917 for the reduction of vancomycin-resistant Enterococcus in the intestinal tract. Bioeng. Transl. Med. 3: 197-208.
- Tscherner M, Giessen TW, Markey L, Kumamoto CA, Silver PA. 2019. A Synthetic system that senses Candida albicans and inhibits virulence factors. ACS Synth. Biol. 8: 434-444.
- Ji C, Xue GF, Lijun C, Feng P, Li D, Li L, et al. 2016. A novel dual GLP-1 and GIP receptor agonist is neuroprotective in the MPTP mouse model of Parkinson's disease by increasing expression of BNDF. Brain Res. 1634: 1-11.
- Holscher C. 2014. Insulin, incretins and other growth factors as potential novel treatments for Alzheimer's and Parkinson's diseases. Biochem. Soc. Trans. 42: 593-599.
- Ji C, Xue GF, Li G, Li D, Holscher C. 2016. Neuroprotective effects of glucose-dependent insulinotropic polypeptide in Alzheimer's disease. Rev. Neurosci. 27: 61-70.
- Fang X, Tian P, Zhao X, Jiang C, Chen T. 2019. Neuroprotective effects of an engineered commensal bacterium in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine Parkinson disease mouse model via producing glucagon-like peptide-1. J. Neurochem. 150: 441-452.
- Zhang X, Pang G, Sun T, Liu X, Pan H, Zhang Y, et al. 2023. A red light-controlled probiotic bio-system for in-situ gut-brain axis regulation. Biomaterials 294: 122005.
- Cubillos-Ruiz A, Alcantar MA, Donghia NM, Cardenas P, Avila-Pacheco J, Collins JJ. 2022. An engineered live biotherapeutic for the prevention of antibiotic-induced dysbiosis. Nat. Biomed. Eng. 6: 910-921.
- Bush K, Bradford PA. 2020. Epidemiology of beta-Lactamase-producing pathogens. Clin. Microbiol. Rev. 33: e00047-19.
- Pantoja Angles A, Valle-Perez AU, Hauser C, Mahfouz MM. 2022. Microbial biocontainment systems for clinical, agricultural, and industrial applications. Front. Bioeng. Biotechnol. 10: 830200.
- Lee JW, Chan CTY, Slomovic S, Collins JJ. 2018. Next-generation biocontainment systems for engineered organisms. Nat. Chem. Biol. 14: 530-537.
- Shen H, Zhang C, Li S, Liang Y, Lee LT, Aggarwal N, et al. 2024. Prodrug-conjugated tumor-seeking commensals for targeted cancer therapy. Nat. Commun. 15: 4343.
- Gao Y, Li W, Huang X, Lyu Y, Yue C. 2024. Advances in gut microbiota-targeted therapeutics for metabolic syndrome. Microorganisms 12: 851.
- Inda-Webb ME, Jimenez M, Liu Q, Phan NV, Ahn J, Steiger C, et al. 2023. Sub-1.4 cm3 capsule for detecting labile inflammatory biomarkers in situ. Nature 620: 386-392.
- Tang TC, Tham E, Liu X, Yehl K, Rovner AJ, Yuk H, et al. 2021. Hydrogel-based biocontainment of bacteria for continuous sensing and computation. Nat. Chem. Biol. 17: 724-731.
- Jones TS, Oliveira SMD, Myers CJ, Voigt CA, Densmore D. 2022. Genetic circuit design automation with Cello 2.0. Nat. Protoc. 17: 1097-1113.
- Taketani M, Zhang J, Zhang S, Triassi AJ, Huang YJ, Griffith LG, et al. 2020. Genetic circuit design automation for the gut resident species Bacteroides thetaiotaomicron. Nat. Biotechnol. 38: 962-969.