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Introduction
The human microbiome, a community of microorganisms coexisting symbiotically with the human body, has

been present since birth [1, 2]. Human microbiota colonizes all body sites, with the gastrointestinal (GI) tract
harboring the highest microbial population [3]. Recently, it has been revealed that modifications to the microbial
community within the gut caused by various factors such as diet, drugs, and environmental signals can lead to
diseases in not only the intestine but also various organs [4]. Consequently, there is a diversification of efforts
aimed at directly or indirectly restoring or maintaining a healthy gut microbiome to regulate human health [5].

With advancements in synthetic biology, the creation of microbes performing desired functions through the
combination of bio-parts has become feasible. Particularly, research on engineered microbial therapeutics using
probiotics or dominant strains as chassis is gaining attention as next-generation treatments [6-9]. Bacteria-based
therapies offer advantages such as self-replication, the potential for diagnostic functions via genetic circuits, the
ability for on-site production and delivery of therapeutic agents, omitting costly downstream processes, and
reducing side effects [8]. Research in this area not only involves conferring roles as delivery vehicles for
therapeutics or vaccines [10] but also encompasses more complex functions. These functions include detecting
biomarkers of inflammation, disease, and pathogens based on genetically encoded biosensors, diagnosing [7, 9],
and recording using memory devices [11, 12]. Additionally, to ensure the stability of these therapeutic agents,
physical or biological containment (biocontainment) technologies are being developed to prevent exposure to
bacteria after and during action [13, 14].

In this review, engineered microbial therapeutics based on synthetic biology are classified according to disease
(Fig. 1). Furthermore, each study is summarized and introduced regarding the strategies used including bio-parts,
actuators and genetic circuits (Tables 1-5). Five representative categories are identified as actively researched areas
up to the present: GI tract disease, tumors, metabolic disease, infectious disease, and others. This information will
provide resources for researchers involved in engineered microbial therapeutics.

The human microbiome, consisting of microorganisms that coexist symbiotically with the body,
impacts health from birth. Alterations in gut microbiota driven by factors such as diet and
medication can contribute to diseases beyond the gut. Synthetic biology has paved the way for
engineered microbial therapeutics, presenting promising treatments for a variety of conditions.
Using genetically encoded biosensors and dynamic regulatory tools, engineered microbes can
produce and deliver therapeutic agents, detect biomarkers, and manage diseases. This review
organizes engineered microbial therapeutics by disease type, emphasizing innovative strategies
and recent advancements. The scope of diseases includes gastrointestinal disorders, cancers,
metabolic diseases, infections, and other ailments. Synthetic biology facilitates precise targeting
and regulation, improving the efficacy and safety of these therapies. With promising results in
animal models, engineered microbial therapeutics provide a novel alternative to traditional
treatments, heralding a transformative era in diagnostics and treatment for numerous diseases.
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Gastrointestinal Disease (GI)
Synthetic biology strategies for treating GI diseases have become increasingly diverse (Table 1). The GI tract is

the primary focus for the application of engineered microbial therapeutics developed through synthetic biology,
due to the feasibility of localized treatment. The prevalence of GI diseases is increasing, affecting nearly 2 million
individuals in North America and Europe with chronic inflammatory disorders such as inflammatory bowel
disease (IBD), which includes ulcerative colitis and Crohn’s disease [15-17].

Encapsulation and Biocontainment
One notable approach involves the physical encapsulation of Escherichia coli Nissle 1917 (EcN), a potential

therapeutic agent for intestinal diseases, within a chitosan-alginate matrix using layer-by-layer assembly and
CaCl2 cross-linking. This method aims to ensure biocontainment and enhance survivability in the harsh
environment of oral administration [14]. 

Genetic Modifications for Enhanced Therapeutic Action
Several strategies involve direct modifications to EcN. For example, therapeutic curli hybrids have been

designed by expressing trefoil factors fused to curli-forming proteins, promoting mucosal healing through
matrix-tethered therapeutic domains [18]. Another approach targets ulcerative diseases by delivering epidermal
growth factor using EcN, facilitating cell migration and extracellular matrix formation for intestinal damage
repair [19]. Moreover, strategies to inhibit tumor necrosis factor-α (TNF-α) crucial target in IBD treatment - have

Fig. 1. Schematic diagram of the utilization for engineered microbial therapeutics. Engineered microbial
therapeutics, developed through synthetic biology, are applied to various conditions including gastrointestinal disease, tumor,
pathogen infection, metabolic disease, and others. These applications utilize strategies that include not only simple production
and delivery of therapeutic substances but also sophisticated regulatory mechanisms using genetic circuits for precise
diagnosis, monitoring, and treatment.
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been explored, including the use of nanobodies to neutralize TNF-α, with EcN’s type III secretion system
enhancing nanobody delivery due to its gram-negative nature [20].

Lactic Acid Bacteria (LAB) as Therapeutic Chassis
In addition to EcN, various strategies employ LAB as therapeutic chassis. These strategies primarily focus on

protein secretion-based approaches, influencing the immune system directly or indirectly. Many target
therapeutic molecules are interleukin (IL) family members, which have shown therapeutic efficacy in conditions
like colitis [21-23]. For example, one study utilized Lactococcus lactis as a chassis to secrete IL-10 while knocking
out the essential gene thyA to achieve auxotrophic biocontainment [13]. Other studies have enhanced wild-type
L. lactis to secrete IL-27 to treat immune colitis [24], and genetically modified Lactobacillus reuteri to secrete IL-22
for conditions such as IBD and Graft versus Host Disease (GvHD) [25]. Furthermore, engineering efforts have
increased IL-22 secretion by replacing the 2nd and 17th proline residues with glycine to counteract high proteolytic
activity in Lactobacillus, preventing cleavage and enhancing IL-22 expression [26].

Commensal Bacteria as Therapeutic Tools
Another research group utilized Bacteroides ovatus, a predominant gut commensal, as a chassis. They first

engineered a system employing a xylan-inducible gene expression mechanism from the xylanase operon and a
secretion signal sequence from the enterotoxin of B. fragilis to produce IL-2 [27]. They then modified this system
to secrete trefoil factor-3 for validation purposes [28]. Further engineering enabled the secretion of transforming
growth factor-β1 to evaluate therapeutic effects in a DSS-induced mouse model [29]. This was followed using the
system to secrete keratinocyte growth factor 2, demonstrating its versatility [30]. The recent study showed
improved secretion of heterologous therapeutic proteins in engineered Bacteroides species, particularly
B. thetaiotaomicron, which is a significant component of the human gut microbiome [31]. The researchers
identified novel signal peptides from B. thetaiotaomicron and Akkermansia muciniphila that enhance protein
transport across cellular membranes. Additionally, they developed an episomal plasmid system that outperforms
traditional chromosomal integration plasmids in protein secretion efficiency [31]. This plasmid system
incorporates an essential gene (thyA)-based selection method to maintain plasmid stability without antibiotics,
which is crucial for clinical applications. The study demonstrates the applicability of these advancements across
multiple Bacteroides species, setting a new standard for developing live biotherapeutics aimed at treating gut

Table 1. Reports on engineered bacterial therapeutics for GI disease.

Chassis Target disease Genetically encoded 
biosensor Actuator Model Ref.

E. coli Nissle 
(EcN) 1917

IBD - Encapsulated 

microbe
Sprague-Dawley 
rat

[14]

E. coli Nissle 
(EcN) 1917

Colitis - Curli-fused trefoil 
factor

C57BL/6NCrl 
mice

[18]

E. coli Nissle 
(EcN) 1917

Intestinal 
ulcerative disease

- Epidermal growth 
factor

C57BL/6 mice [19]

E. coli Nissle 
(EcN) 1917
ΔthyA, alr

IBD - Type3 secretion 
apparatus
TNF-α neutralizing 
nanobody

C57BL/6 mice
BALB/c mice

[20]

Lactococcus lactis
ΔthyA

IBD - Interleukin-10 Piétrain/Landrace 
crossbred pigs 

[13]

L. lactis Colitis - Interleukin-27 C57BL/6 mice [24]
Lactobacillus 
reuteri

Intestinal disease
(GvHD, IBD)

- Interleukin-22 - [25]

Bacteroides 
ovatus

Chronic gut 
disorder

- Interleukin-2 - [27]

B. ovatus Chronic gut 
disorder

- Trefoil factor - [28]

B. ovatus Colitis - Transforming growth 
factor-β1

C57BL/6 mice [29]

B. ovatus Colitis - Keratinocyte growth 
factor-2

C57BL/6 mice [30]

Bifidobacterium 
longum

Colitis - PEP-1 fused 
manganese 
superoxide dismutase

Sprague-Dawley 
rat

[32]

E. coli Nissle 
(EcN) 1917

IBD Thiosulfate-inducible 
sensor for the sensing of 
biomarker and 
regulation of genes 
expression

Cytosine base editor
sgRNA
sfGFP
Hly fused AvCystatin

C57BL/6J mice [12]
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diseases. Additionally, Bifidobacterium longum, known for its probiotic properties, was used as a chassis. In this
study, a fusion protein of PEP-1 and manganese superoxide dismutase was expressed. This fusion protein was
designed to convert reactive oxygen species, which increase during colitis onset, thus reducing intestinal
inflammation [32].

Intelligent Whole-cell Systems
In addition, there have been reports on systems designed not only for inflammation treatment but also for

detecting inflammation biomarkers and releasing drugs only when these biomarkers are detected. In one such
study, a genetic circuit was engineered into EcN to regulate the expression of several components: the expression
of superfolder green fluorescent protein (sfGFP) for real-time signal confirmation through a bacterial two-
component system capable of detecting thiosulfate as the selected biomarker, the induction of cytosine base editor
along with sgRNA for inducing inheritable signals through base editing, and the expression of AvCystatin, an
immunomodulatory protein. This intelligent whole-cell engineered bacteria system was designed to alleviate
inflammation, demonstrating its potential effectiveness in inflammation relief [12]. A whole-cell biosensor using
engineered EcN was reported to diagnose gut inflammation by sensing nitrate levels, a biomarker of
inflammation [33]. The study employed the NarX-NarL two-component regulatory system to create a nitrate-
responsive genetic circuit. This biosensor was optimized for sensitivity and specificity and successfully detected
elevated nitrate levels in a mouse model of colitis. Additionally, they introduced a Boolean AND logic gate
combining nitrate and thiosulfate sensing, enhancing the biosensor's specificity for gut inflammation [33]. 

Chronic Inflammation Management
Chronic inflammation of the GI tract, the focus of these studies, is marked by recurrent cycles of symptom

exacerbation and remission, with a multifactorial etiology. The complexity of its onset and progression often
makes specific therapeutic interventions challenging, leading to the frequent use of systemic immunosuppressants,
which carry significant risks of adverse effects [34]. The described research efforts continue to propose effective,
less risky treatment modalities for managing the complexities of GI tract inflammation.

Tumor
The application of engineered microbial therapeutics, enhanced through synthetic biology, is increasingly

prominent in cancer treatment. Bacteria-based therapies for tumors offer several advantages, including their
ability to colonize tumors and deliver therapeutic molecules directly to the site. This capability facilitates the direct
killing of tumor cells and the induction of antitumor immune responses [35]. Several therapeutic strategies have
emerged based on these advantages (Table 2).

Facultative Anaerobes for Selective Colonization
Certain facultative anaerobes, known for their ability to selectively colonize tumors, have been utilized. One

study modified E. coli χ6212 into an aspartate auxotroph by knocking out aspartate semialdehyde dehydrogenase
(asd), allowing it to deliver pore-forming proteins from S. aureus to treat tumors [36]. Another strategy
employed E. coli MG1655 as a chassis to secrete anti-tumor proteins via the type III secretion system from
Salmonella [37]. 

Immune System Modulation
EcN was engineered to produce cyclic di-AMP, a stimulator of interferon genes agonist, to induce type 1

interferon production and enhance anticancer effects [38]. This research also included strategies involving the
knockout of essential genes for biocontainment and plasmid selection [38]. Indirect therapeutic enhancements
have also been explored. For instance, EcN was engineered to overproduce L-arginine, which enhances the
effectiveness of programmed death-ligand 1 (PD-L1) blocking antibodies, key immune checkpoint inhibitors
[39]. Another approach used EcN to produce melanin, enhancing tumor photothermal and immunotherapy, and
delivered via outer membrane vesicles coated with calcium phosphate for increased delivery efficiency [40].

Targeted Tumor Recognition
Unique strategies for specific cancer types have been reported as well. For colorectal cancer (CRC), Pediococcus

pentosaceus SL4 was engineered to produce P8, a protein from Lactobacillus rhamnosus CBT LR5, effectively
reducing tumor volume and inhibiting growth [41, 42]. EcN was also designed to recognize the tumor
microenvironment (TME) by incorporating sensors for lactate, pH, and hypoxia, leading to the secretion of
hemolysin based on TME recognition [43]. Furthermore, a synthetic consortium of three bacterial strains was
applied to treat CRC, reducing metabolic load and enhancing treatment efficacy [43]. 

Enzyme Expression for Anticancer Compounds
Enzyme expression for converting dietary substances into therapeutic agents has also been investigated. In one

study, EcN was engineered to express histone-like protein A on its surface to bind specifically to CRC cells and
secrete an enzyme that converts glucosinolate from cruciferous plants into the anticancer compound
sulforaphane near the tumor site [44]. For head and neck squamous cell carcinoma, Bifidobacterium breve was
engineered to secrete melanoma differentiation-associated gene-7/interleukin-24 (MDA-7/IL-24), which
induces apoptosis in various cancer cells [45-49].
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Innovative Bacterial Systems
Acyl homoserine lactone (AHL)-inducible sensors have been used to induce the production of therapeutic

agents and cell lysis, facilitating therapeutic delivery. This system was initially used to design a strategy with CD47
antagonistic nanobodies, enhancing anti-tumor T cell priming by promoting phagocytosis of cancer cells and
cross-presentation of tumor antigens [50]. Subsequently, therapies incorporating PD-L1 and CTLA-4 blocking
nanobodies with granulocyte macrophage colony-stimulating factor production were developed [51]. This
system was also applied to colorectal neoplasia, demonstrating therapeutic effects upon oral administration of
engineered bacteria [52]. 

Challenges and Future Directions
Bacterial cancer therapies represent a significant segment of the therapeutic market utilizing engineered

microbes. Ongoing research continues to refine the strengths and address the weaknesses of commonly used
bacterial strains, expand therapeutic strategies, and improve methods for delivering treatments [35].

Metabolic Disease
Numerous studies have explored the treatment of metabolic diseases using engineered microbial therapeutics

(Table 3). Metabolic diseases are conditions that disrupt the metabolic process, such as the conversion of food into
energy at the cellular level. Diagnostic markers for these diseases involve the cellular ability to perform key
biochemical reactions related to proteins (amino acids), carbohydrates (sugars and starches), or lipids (fatty acids)
[53]. 

Obesity
Obesity, a significant factor in metabolic diseases, often results from the excessive accumulation of triglycerides

in adipose tissue [54]. Gut microbial diversity and composition also play a crucial role [55]. In this context, one
strategy for treating obesity involves engineered L. lactis strains that secrete glucagon-like peptide-1 (GLP-1), a

Table 2. Reports on engineered bacterial therapeutics for tumor.

Chassis Target disease Genetically encoded 
biosensor Actuator Model Refs

E. coli χ6212 Δasd Tumor - α-hemolysin BALB/c mice [36]
E. coli MG1655 Tumor - Type 3 secretion system

Mitochondrial targeting 
domain of Noxa

BALB/c mice [37]

E. coli Nissle (EcN) 
1917 
ΔdapA, thyA

Tumor - Cyclic di-AMP C57BL/6 mice
BALB/c mice

[38]

E. coli Nissle (EcN) 
1917 
ΔargR, 
malEK::argAfbr

Tumor - L-Arginine C57BL/6 mice [39]

E. coli Nissle 1917 Tumor - Melanine BALB/c mice [40]
Pediococcus 
pentosaceus SL4 Δalr

Colorectal 
cancer

- P8 BALB/c mice
C57BL/6J mice

[42]

E. coli Nissle (EcN) 
1917

Colorectal 
cancer

Lactate, pH, 
Hypoxia-
inducible sensor 
for the expression 
of serine 
integrase

Hemolysin BALB/c mice
C57BL/6J mice

[43]

E. coli Nissle (EcN) 
1917

Colorectal 
cancer

- INP-tagged histone-like 
protein A
YebF-fused I1 myrosinase

BALB/c mice [44]

Bifidobacterium 
breve

Head and neck 
squamous cell 
carcinoma

- MDA-7/IL-24 BALB/c mice [49]

E. coli Pir1+ Tumor AHL-inducible 
sensor for the 
production of 
transcription 
factor and lysis 
protein

Phage-lysis protein (ϕX174E)
HA-tagged CD47 
antagonistic nanobody

BALB/c mice
C57BL/6 mice

[50]

E. coli Nissle (EcN) 
1917

Tumor Phage-lysis protein (ϕX174E)
HA-tagged PD-L1 blocking 
nanobody
HA-tagged CTLA4 blocking 
nanobody
Granulocyte-macrophage 
colony-stimulation factor

BALB/c mice [51]

E. coli Nissle (EcN) 
1917
ΔclbA

Colorectal 
neoplasia

C57BL/6 mice [52]
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hormone that stimulates insulin secretion in a glucose-dependent manner. This approach enhances fatty acid
oxidation, reduces blood triglyceride levels, and activates peroxisome proliferator-activated receptors α (PPARα)
to improve liver tissue, thus alleviating obesity [54].

Liver Disease
The liver is vital in lipid and glucose metabolism in obese individuals. Liver diseases, which result from

abnormalities in these metabolic processes, are categorized based on alcohol influence. Non-alcoholic fatty liver
disease occurs when fat comprises more than 5% of liver weight due to non-alcoholic factors [56], while alcoholic
liver disease results from excessive ethanol intake, leading to hepatic steatosis, alcoholic steatohepatitis, and
hepatocellular carcinoma [57]. IL-20 family cytokines, particularly IL-22, have shown potential in reducing liver
injury through the activation of the STAT3 signaling pathway [58, 59]. Engineered L. reuteri strains secreting IL-
22 have demonstrated therapeutic effects in both alcoholic and non-alcoholic fatty liver diseases [60, 61].

Diabetes
Engineered microbes have also been utilized to treat diabetes, a prevalent metabolic disease. For autoimmune

diabetes, L. lactis has been engineered to secrete human proinsulin and IL-10, which, when administered with
low-dose anti-CD3 antibodies, reversed hyperglycemia and reduced insulin autoantibody levels, effectively
reversing diabetes [62]. Additionally, in treating diabetic retinopathy, engineered Lactobacillus paracasei
secreting angiotensin-converting enzyme 2 reduced inflammation and oxidative stress within the renin-
angiotensin system, improving diabetic retinopathy outcomes [63].

Addressing Genetic Metabolic Disorders
Therapeutic interventions have also targeted metabolic diseases caused by the loss of genes encoding metabolic

enzymes. For example, enteric hyperoxaluria (EH) results from the accumulation and absorption of dietary
oxalate in the intestines [64]. A strategy to address EH involves engineering EcN to express oxalate transporters
and enzymes that convert oxalate into fumarate, reducing intestinal oxalate levels [65]. Similarly, hyperammonemia,
a condition causing hepatic encephalopathy due to ammonia accumulation, has been addressed by altering the
inhibitory feedback mechanism in EcN. By knocking out the repressor ArgR and expressing a feedback-resistant

Table 3. Reports on engineered bacterial therapeutics for metabolic disorder.
Chassis Target disease Genetically encoded biosensor Actuator Model Refs

L. lactis Obesity - GLP-1 C57BL/6 mice [54]
L. reuteri Nonalcoholic 

fatty liver disease
- Interleukin-22 C57BL/6J mice [60]

L. reuteri Alcoholic liver 
disease

- Interleukin-22 C57BL/6 mice [61]

L. lactis Diabetes - Proinsulin
Interleukin-10

NOD mice [62]

Lactobacillus 
paracasei

Diabetic 
retinopathy

- Angiotensin converting 
enzyme 2

C57BL/6J mice [63]

E. coli Nissle 
1917 
ΔthyA

Enteric 
hyperoxaluria

- Oxalate/formate 
antiporter
Oxalyl-CoA 
decarboxylase
Formyl-CoA trasferase

C57BL/6J mice
Cynomolgus 
monkey

[65]

E. coli Nissle 
1917 
ΔthyA, argR

Hepatic 
encephalopathy

- N-acetylglutamate 
synthase

C57BL/6 mice
Cynomolgus 
monkey
Human (healthy)

[66]

E. coli Nissle 
1917 
ΔdapA

Phenylketonuria - Phenylalanine 
transporter
Phenylalanine 
ammonia lyase
L-amino acid 
deaminase

C57BL/6 mice
Cynomolgus 
monkey

[67]

Trans-cinnamate-
inducible sensor for the 
screening of 
phenylalanine ammonia 
lyase activity

Phenylalanine 
transporter
Phenylalanine 
ammonia lyase mutant
L-amino acid 
deaminase

Cynomolgus 
monkey

[68]

Small molecule-inducible 
sensor array for the 
regulation of enzyme 
expression

- [69]
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version of N-acetylglutamate synthase, this modification demonstrated therapeutic efficacy in suppressing
hyperammonemia [66]. For phenylketonuria, characterized by neurotoxicity due to phenylalanine accumulation,
engineered EcN was used to convert phenylalanine into non-toxic trans-cinnamate (TCA) while also expressing
membrane-anchored L-amino acid deaminase to convert phenylalanine into phenyl pyruvate extracellularly [67].
Subsequent improvements involved selecting a more efficient phenylalanine ammonia lyase mutant using a TCA
biosensor, resulting in a microbial therapy twice as effective as the previous version [68]. Further enhancements
included creating genomic landing pads on EcN chromosomes for gene insertion, utilizing transcription factor-
based sensors with small molecule ligands to improve phenylalanine conversion by 50% compared to existing
methods [69]. Continuous advancements in using engineered microbes to express enzymes or substances that
activate desired metabolic pathways highlight the potential for treating metabolic disorders.

Infection
Infectious diseases remain a leading cause of mortality in clinical settings [70]. While antibiotic administration

is a common treatment, it can eliminate beneficial microbes and promote antibiotic-resistant bacteria.
Consequently, research on engineered microbes for treating infections is actively progressing (Table 4).

Pseudomonas aeruginosa
To combat P. aeruginosa infections in the GI tract [71], researchers have explored two main strategies across

three studies. The first strategy utilized sensing, lysing, and killing devices. Two studies employed P. aeruginosa's
type I quorum sensing mechanism to detect 3OC12HSL using a transcription factor-based sensor. Upon detection,
these sensor cells expressed enzymes that caused self-lysis and released bacteriocins, resulting in the pathogen's
destruction [72, 73]. The second strategy used the same biosensor but with a different output: secretion of DNaseI
to break down biofilms, attraction of the pathogen through chemotaxis, and secretion of bacteriocins to kill the
pathogen [74].

Vibrio cholerae
For V. cholerae, which causes 21,000 to 143,000 deaths annually [75], treatment strategies vary based on the use

of biosensors. Without biosensors, one approach involved engineering EcN to express both CAI-1 and AI-2 to
suppress virulence gene expression in V. cholerae [76, 77]. Another strategy targeted antibiotic-resistant V. cholerae
by using a type II bacterial toxin-antitoxin system as an actuator, which selectively killed the pathogen upon

Table 4. Reports on engineered bacterial therapeutics for infection.
Chassis Pathogen Genetically encoded biosensor Actuator Model Refs

E. coli 
TOP10

Pseudomonas 
aeruginosa

3OC12HSL-inducible sensor for the 
production of cell lysis enzyme and 
bacteriocin

Pyocin S5
E7 lysis protein

- [72]

E. coli 
Nissle 1917 
Δalr, dadX

3OC12HSL-inducible sensor for the 
production of cell lysis enzyme, 
bacteriocin, and anti-biofilm enzyme

Pyocin S5
E7 lysis protein
Dispersin B

Caenorhabditis 
elegans
ICR mice

[74]

E. coli 
UU2685

3OC12HSL-inducible sensor for the 
activation of motility and killing 
modules

Microcin S
DNaseI
CheZ fused 
degron

- [73]

E. coli 
Nissle 1917

Vibrio cholera - Cholera 
autoinducer 1

CD-1 mice [77]

E. coli XL2 
Blue

- Type II gyrase 
inhibiting toxin

- [78]

E. coli 
MG1655

Cholera autoinducer 1-inducible 
sensor for expression of lysis enzyme

Artilysin
YebF fused 
Artilysin

Zebrafish larvae
Crustacean larvae

[79]

E. coli 
Nissle 1917

Salmonella 
enterica

- Microcin J25 Turkey [82]

E. coli 
Nissle 1917

Tetrathionate-inducible sensor for the 
production of antimicrobial peptide 
and competition of resource

Microcin H47 - [83]

E. coli 
Nissle 1917 
Δalr, dadX

Clostiridium 
difficile

Sialic acid-inducible sensor for 
diagnosis of antibiotic-induced 
dysbiosis

Bile salt 
hydrolase

C57BL/6 mice [85]

E. coli 
Nissle 1917

Enterococcus 
faecium
Enterococcus 
faecalis

- Enterocin A
Enterocin B
Hiracin JM79

Balb/cJ mice [86]

E. coli 
NGF-1

Candida 
albicans

Hydroxyphenylacetic acid-inducible 
sensor for the sensing of fungus

Cis-2-
dodecenoic acid

- [87]
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horizontal gene transfer of the plasmid [78]. With biosensors, a sensing, lysing, and killing device was developed.
This device used a CAI-1 sensor to trigger cell lysis and release lysing enzymes to kill the pathogen [79].

Salmonella enterica
To combat S. enterica, which causes significant foodborne illness [80, 81], strategies without biosensors

involved engineering EcN strains to secrete antimicrobial peptides, achieving a 25-fold higher clearance rate in
turkeys compared to controls [82]. Another approach used a tetrathionate sensor to regulate antimicrobial
peptide expression, providing both bactericidal effects and resource competition [83].

Clostridium difficile
For C. difficile, which thrives due to gut dysbiosis, researchers engineered a sensor for sialic acid, which

increases during dysbiosis [84]. This sensor regulated enzymes converting taurocholate, a C. difficile germination
inducer, into cholate, thus preventing infection by modulating germination [85].

Enterococci and Candida albicans
Additionally, strategies to inhibit Enterococci growth, which causes nosocomial infections and shows antibiotic

resistance, involved using three antimicrobial peptides simultaneously [86]. Research targeting C. albicans, a
fungus causing opportunistic infections, focused on identifying and detecting secreted substances using
biosensors to inhibit hypha formation, a virulence factor [87]. 

Ongoing Research and Future Directions
Various therapeutic strategies are being explored to replace antibiotics with engineered bacterial therapeutics,

aiming to combat infections caused by bacteria and fungi more safely and effectively.

Other Diseases
In addition to GI diseases, tumor, and metabolic diseases, synthetic biology and engineered microbial

therapeutics offer promising solutions for a range of other diseases. These approaches leverage the precision of
genetic circuits and the versatility of microbial systems to address complex health challenges (Table 5).

Neurodegenerative Diseases
One significant area of application is neurodegenerative diseases, particularly through the regulation of the gut-

brain axis. Two notable studies focus on treating Parkinson’s disease (PD), characterized by the loss of
dopaminergic neurons in the brain. Both studies utilized GLP-1 and its analog Exendin-4 as therapeutic agents
due to their known beneficial effects on PD [88]. GLP-1 can cross the blood-brain barrier, protect neurons from
oxidative stress-induced apoptosis, and promote neuronal proliferation, making it a potential treatment [89, 90].
In one study, L. lactis was engineered to continuously express and secrete GLP-1 [91]. Another study, engineered a
strain to constitutively express Exendin-4 and incorporated a red-light inducible chimeric light sensor to regulate
the expression of a cell lysis enzyme, allowing controlled drug release through red-light stimulation with high skin
penetrability [92]. These studies highlight the potential for treating diseases in organs beyond the gut through
diverse therapeutic production and delivery methods.

Antibiotic-induced Dysbiosis
Another area of research targets antibiotic-induced dysbiosis. One study focused on β-lactamase and employed

L. lactis as a chassis, splitting β-lactamase into two fragments fused with SpyTag/Catcher for extracellular
secretion [93]. Unlike β-lactamase in Gram-negative bacteria, which is located in the periplasm and confers
antibiotic resistance to single cells [94], this study used Gram-positive bacteria, making survival dependent on cell
density. When the engineered microbes and antibiotics were administered, the gut microbiota exhibited less
disruption compared to the control group, demonstrating an inhibitory effect on pathogenic strains such as
C. difficile [93]. This research exemplifies the broader therapeutic applications of engineered microbes.

Indeed, synthetic biology-driven engineered bacterial therapeutics hold significant potential for targeting
various organs and disease targets, contingent upon the identification and combination of appropriate bio-parts
as demonstrated in these studies.

Table 5. Reports on engineered bacterial therapeutics for other diseases.
Chassis Target disease Genetically encoded biosensor Actuator Model Refs

L. lactis Parkinson’s 
disease

- GLP-1 C57BL/6 mice [91]

E. coli 
Nissle 1917

Parkinson’s 
disease

Red-light inducible chimeric 
light sensor for production of cell 
lysis enzyme

Exendin-4 fused 
anti-neonatal FC 
receptor affibody

C57BL/6 mice [92]

L. lactis Antibiotic-
induced 
dysbiosis

- SpyTag fused 
β-lactamase fragment 1
SpyCatcher fused 
β-lactamase fragment 2

C57BL/6 mice [93]
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Challenges and Future Directions
While engineered microbial therapeutics hold significant promise, several challenges must be addressed to

bring these treatments from the lab to the clinic. For GI diseases, one major hurdle is ensuring the stability and
survivability of therapeutic microbes in the harsh conditions of the GI tract. Approaches like encapsulation [14]
and biocontainment [13, 95, 96] are being developed to overcome these challenges, but further research is needed
to ensure consistent efficacy in human trials. In the case of cancers, the primary challenge lies in the selective
targeting of tumors [44] and minimizing off-target effects [44, 97]. Strategies such as engineering microbes to
respond to tumor-specific biomarkers are promising but require rigorous validation. Metabolic diseases present a
unique challenge in achieving sustained therapeutic effects without disrupting the body's metabolic balance [98].
Finally, for infectious diseases, the main obstacle is developing therapies that are potent enough to eradicate
pathogens without promoting antibiotic resistance or disrupting the native microbiota [73].

To gain approval as new drugs, engineered microbial therapeutics must overcome significant regulatory hurdles.
These include demonstrating safety and efficacy through preclinical studies and clinical trials. Additionally,
regulatory agencies require comprehensive data on the genetic stability and biocontainment of these organisms to
prevent unintended environmental release [95]. Establishing standardized protocols for the production and
quality control of these biotherapeutics is also crucial. Collaborative efforts between researchers, regulatory
bodies, and industry stakeholders will be essential to streamline this process. To create safe and effective
engineered microbial therapeutics, several standards and genetic methods should be applied. These include
genetic stability, rigorous testing, standardization, and regulatory compliance. To ensure the safety and efficacy of
engineered microbial therapeutics, several critical measures must be taken. First, incorporating genetic
safeguards such as kill switches and biocontainment mechanisms is essential to prevent horizontal gene transfer
and environmental persistence [14, 92, 99, 100], thereby ensuring genetic stability. Rigorous testing, including
extensive in vitro and in vivo studies, is necessary to evaluate the long-term safety and therapeutic efficacy of these
microbes. Developing standardized protocols for genetic modifications and therapeutic production is crucial to
maintain consistency across different batches and studies. Finally, adherence to regulatory guidelines set by
agencies such as the FDA and EMA is imperative. This includes submitting detailed data on genetic constructs,
production methods, and safety evaluations to comply with regulatory requirements. By implementing these
measures, the development of safe and effective microbial therapeutics can be achieved.

The use of live genetically modified microorganisms presents several challenges, including environmental
exposure, phenotypic changes, and non-specific mutations. To mitigate these issues, several strategies must be
employed. First, physical and genetic biocontainment strategies are crucial to prevent the release and spread of
modified organisms in the environment [96]. Ensuring the phenotypic stability of therapeutic strains through
rigorous genetic and phenotypic screening is essential. Advanced gene editing techniques should be used to
minimize off-target effects and non-specific mutations. Additionally, designing therapeutics that do not rely on
antibiotic resistance markers and developing alternative selection methods can help manage antibiotic resistance
[13, 31]. Finally, conducting detailed pharmacokinetic studies is important to understand the distribution,
persistence, and clearance of these therapeutics in the human body. By addressing these challenges, the safe and
effective use of live genetically modified microorganisms can be achieved.

Conclusion
Looking ahead, several key areas should be prioritized to further advance the field of synthetic biology and

engineered microbial therapeutics. First, there is a need for continued development and refinement of genetic
circuits that can provide more precise and robust control over microbial functions. This includes the creation of
more sophisticated biosensors and actuators that can respond to a wider range of biological signals and
environmental conditions. Additionally, enhancing the stability and safety of these engineered microbes is
crucial, particularly through the implementation of biocontainment strategies that prevent unintended spread
and ensure that therapeutic functions are restricted to the target site. Another important direction is the
integration of engineered microbial therapeutics with other treatment modalities, such as conventional drugs,
immunotherapies, and personalized medicine approaches. Combining these therapies can enhance their
effectiveness and reduce the likelihood of resistance. For example, engineered bacteria that deliver checkpoint
inhibitors directly to tumor sites could complement systemic immunotherapies, providing a more targeted and
potent anti-cancer strategy. Moreover, advancements in genome editing technologies, such as CRISPR-Cas
systems, can facilitate the development of more precise and efficient microbial therapeutics, enabling the
correction of genetic disorders and the modulation of complex metabolic pathways [101, 102]. Finally, rigorous
clinical evaluation and regulatory frameworks are essential to translate the promising research findings into safe
and effective therapies for patients. This includes conducting well-designed clinical trials to assess the efficacy,
safety, and long-term effects of engineered microbial therapeutics in diverse patient populations. Collaboration
between researchers, clinicians, regulatory agencies, and industry stakeholders will be critical to overcoming the
challenges and accelerating the adoption of these innovative therapies in clinical practice. In conclusion,
advancements in synthetic biology and engineered microbial therapeutics hold great promise for revolutionizing
the treatment of a wide array of diseases. By continuing to innovate and address the remaining challenges, we can
unlock the full potential of these cutting-edge therapies and improve the health and well-being of patients
worldwide.
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