DOI QR코드

DOI QR Code

A Study on Impact of Self-Service Technology on Library Kiosk Service Satisfaction and Usage Intention: Toward a Task-Technology Fit Model

셀프서비스 기술이 도서관 키오스크 서비스 만족과 이용의도에 미치는 영향 연구: 과업-기술 적합성 모델을 중심으로

  • Jun Kyu Keum ;
  • Jee Yeon Lee
  • 금준규 (연세대학교 문헌정보학과) ;
  • 이지연 (연세대학교 문헌정보학과)
  • Received : 2024.08.11
  • Accepted : 2024.08.29
  • Published : 2024.09.30

Abstract

This study aims to explore the utilization of kiosks, a case of self-service technology in library services, by applying task-technology fit theory to reveal the factors that affect the satisfaction and continued use of library kiosk services and to conduct a review of library non-face-to-face services. We organized the kiosk characteristic factors through a literature review and established a research model mediated by related theories. We collected 229 valid questionnaire data from users with experience using library kiosks and analyzed them using SPSS 26.0 and SmartPLS 4.0 programs. The analysis results confirmed that the fit of library services and self-service technology was significantly influenced by the usefulness and enjoyment of kiosk technology characteristics and the kiosk-friendly environment of the usage environment attributes. In addition, we found the fit between library services and self-service technology to significantly affect library kiosk usage satisfaction and intention to continue using the kiosk, so this study proposed a plan for library kiosk services utilizing the significant factors. In addition, to effectively use the kiosks as a non-face-to-face library service, we suggest operating them in line to provide library information materials, install them in various locations within the library to increase accessibility, and provide education on how to use them for learning and to raise positive awareness of the kiosks for the digitally disadvantaged.

본 연구는 도서관 서비스에서 셀프서비스 기술 사례인 키오스크의 활용방안을 모색하기 위해 과업-기술 적합성 이론을 적용하여 도서관 키오스크 서비스 이용만족과 지속이용에 영향을 미치는 요인을 밝히고, 이를 통해 도서관 비대면 서비스에 대한 고찰을 수행함을 목적으로 한다. 문헌조사를 통해 키오스크 특성요인을 정리하고 관련 이론을 매개로 한 연구모형을 수립하였다. 도서관 키오스크 이용경험이 있는 이용자들을 대상으로 총 229부의 유효한 설문데이터를 확보하여 SPSS 26.0와 SmartPLS 4.0 프로그램을 활용하여 분석하였다. 분석 결과, 도서관 서비스와 셀프서비스 기술의 적합성에는 키오스크 기술 특성으로 유용성과 유희성이, 이용환경 특성으로 키오스크 친화적 환경이 유의미한 영향을 미친다는 점을 확인하였다. 또한, 도서관 서비스와 셀프서비스 기술 간의 적합성은 도서관 키오스크 이용만족과 지속이용의도에 유의미한 영향을 주는 것으로 나타났기에, 유의미한 요인들을 활용한 도서관 키오스크 서비스 방안을 제안하였다. 추가로, 도서관 비대면 서비스로서 키오스크를 잘 활용하기 위해 도서관 정보자료 제공 목적에 맞도록 운영하고, 도서관 내 여러 장소에 설치하여 접근성을 높이는 방안과 디지털 약자층을 대상으로 키오스크에 대한 긍정적 인식과 학습을 위한 활용교육을 병행할 것을 제안하였다.

Keywords

Acknowledgement

이 연구는 2022년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임 (NRF-2022S1A5C2A03093597).

References

  1. An, Jae-Young, Lee, Choong-Cheang, Bae, Da-Eun, & Lee, So-Hyun (2020). A study on use of untact service: Based on kiosk case. The Journal of Internet Electronic Commerce Research, 20(4), 49-73. http://doi.org/10.37272/JIECR.2020.08.20.4.49 
  2. Cha, Sung-Jong (2011). A study on the user satisfaction of public library users in Korea. Journal of the Korean Society for Information Management, 28(1), 285-308. http://doi.org/10.3743/KOSIM.2011.28.1.285 
  3. Cho, Chan-Sik & Kim, Won-Jin (2012). A study on the user satisfaction with the legislative information services of the National Assembly Library. Journal of the Korean Society for Information Management, 29(1), 95-113. http://doi.org/10.3743/KOSIM.2012.29.1.095 
  4. Choi, Hoon-Sung, Ko, Young-Beom, Min, Dae-Hwan, & Lee, Han-Jin (2023). Research on recognition differences of PSD features in KIOSK. The Society of Convergence Knowledge Transactions, 11(2), 45-55. 
  5. Jang, Byung-Ju, Kim, Yoon-Kyung, & Kim, Cheol-Woo (2012). A study on the structural relationships among service quality of medical institution, customer satisfaction, revisit intention, recommendation intention for medical tourists. Northeast Asia Tourism Research, 8(2), 119-137. 
  6. Kang, Sung-Bae (2022). The Effects of metaverse service characteristics on continuance use intention. Culture and Convergence, 44(10), 87-98. 
  7. Kim, Bong-Seob & Ko, Jeong-Hyeon (2022). A study on the effect of accomplished capital of the elderly on digital capital: focusing on the relationship with digital device use attitudes. Informatization Policy, 29(2), 106-126. http://doi.org/10.22693/NIAIP.2022.29.1.106 
  8. Kim, Byung-Ju (1999). A study of scholarly information use characteristics of university professors. Journal of the Korean Biblia Society for Library and Information Science, 10(1), 29-54. 
  9. Kim, Hyun-Kyu, Chung, Nam-Ho, & Poe, Baek (2021). The impact of hotel and airport servicescape on kiosk users' value co-creation behavior and service satisfaction: the mediating effect of task-technology fit. Journal of Hospitality and Tourism Studies, 23(2), 130-145. http://doi.org/10.31667/jhts.2021.6.87.130 
  10. Kim, Jun & You, Jae-Hyun (2021). Influences of Metaverse's characteristic factors over perceived value and continuance intention. Journal of Industrial Economics and Business, 34(6), 1339-1362. 
  11. Kim, Kyu-Mee & Kim, Nam-Jo (2019). Analysis of food consumers of usage attitude and usage intention towards technology-based self-service(TBSS): Focused on TRAM(integrated technology readiness and acceptance model). Journal of Tourism and Leisure Research, 31(3), 237-257. 
  12. Kim, Young-kyun (2009). A study on the determinants of consumers' intention to switch to new self-service technologies in Banking Industry. Journal of Korea Society of Industrial Information Systems, 14(1), 73-89. 
  13. Korea Consumer Affairs (2022). Kiosk (Unmanned Information Terminal) Usage Survey.
  14. Ministry of Science and ICT (2023), 2022 Internet Usage Survey. 
  15. Lee, In-Sook, Na, Young-Ah, & Yoon, Hye-Hyun (2013). The effects of foodservice consumer's perceived Technology-Based Self-Service characteristics on satisfaction and purchase intention: With a focus on an online menu ordering system. International Journal of Tourism and Hospitality Research, 27(4), 85-100. 
  16. Moon, Hye-Young (2022). Development and validation of SSTQUAL scales in the hotel & restaurant industry. Korean Journal of Hospitality and Tourism, 31(1), 19-35. 
  17. Office for National Statistics (2023). 2022 Census of Population and Housing. 
  18. Yoo, Weon-Sang, Kim, Sung-Ho, & Cho, Sung-Bin (2010). The Relationship between service quality and satisfaction of E-government Self Service Technology. Journal of Korean Society for Quality Management, 38(4), 549-560. 
  19. Ahn, J. A. & Seo, S. (2018). Consumer responses to interactive restaurant self-service technology (IRSST): The role of gadget-loving propensity. International Journal of Hospitality Management, 74, 109-121. https://doi.org/10.1016/j.ijhm.2018.02.020 
  20. Anderson, J. C. & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411-423. https://psycnet.apa.org/doi/10.1037/0033-2909.103.3.411 
  21. Baba, N., Mohd Shahril, A., & Hanafiah, M. H. (2020). Self-ordering kiosk usage and post-purchase behaviour in quick service restaurant. Journal of Tourism, Hospitality & Culinary Arts (JTHCA), 12(1), 1-17. 
  22. Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 351-370. https://doi.org/10.2307/3250921 
  23. Bhatti, T. (2007). Exploring factors influencing the adoption of mobile commerce. Journal of Internet Banking and Commerce, 12(3), 1-13. 
  24. Boon-Itt, S. (2015). Managing self-service technology service quality to enhance e-satisfaction. International Journal of Quality and Service Sciences, 7(4), 373-391. https://doi.org/10.1108/IJQSS-01-2015-0013 
  25. Chauhan, C., Parida, V., & Dhir, A. (2022). Linking circular economy and digitalisation technologies: A systematic literature review of past achievements and future promises. Technological Forecasting and Social Change, 177, 121508. https://doi.org/10.1016/j.techfore.2022.121508 
  26. Chin, W. W. (1998). The Partial Least Squares Approach to Structural Equation Modeling. In George A. M. eds. Modern Methods for Business Research. New York: Psychology Press. https://doi.org/10.4324/9781410604385 
  27. Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, New Jersey: Routledge. 
  28. Collier, J. E. & Sherrell, D. L. (2010). Examining the influence of control and convenience in a self-service setting. Journal of the Academy of Marketing Science, 38, 490-509. https://doi.org/10.1007/s11747-009-0179-4 
  29. Dabholkar, P. A. (1996). Consumer evaluations of new technology-based self-service options: An investigation of alternative models of service quality. International Journal of Research in Marketing, 13(1), 29-51. https://doi.org/10.1016/0167-8116(95)00027-5 
  30. Dang, Y. M., Zhang, Y. G., Brown, S. A., & Chen, H. (2020). Examining the impacts of mental workload and task-technology fit on user acceptance of the social media search system. Information Systems Frontiers, 22(3), 697-718. https://doi.org/10.1007/s10796-018-9879-y 
  31. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319-340. https://doi.org/10.2307/249008 
  32. Eggert, A. & Ulaga, W. (2002). Customer perceived value: a substitute for satisfaction in business markets?. Journal of Business & Industrial Marketing, 17(2/3), 107-118. https://doi.org/10.1108/08858620210419754 
  33. Fornell, C. & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104 
  34. Gefen, D., Straub, D., & Boudreau, M. C. (2000). Structural equation modeling and regression: Guidelines for research practice. Communications of the Association for Information Systems, 4(1), 7. https://doi.org/10.17705/1CAIS.00407 
  35. Ghosh, M. (2021). Understanding the relationship of self-service technology quality with user adoption using SSTQUAL. The TQM Journal, 33(2), 293-314. https://doi.org/10.1108/TQM-12-2019-0291 
  36. Goodhue, D. L. & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS Quarterly, 213-236. https://doi.org/10.2307/249689 
  37. Gremler, D. D. & Gwinner, K. P. (2000). Customer-employee rapport in service relationships. Journal of Service Research, 3(1), 82-104. https://doi.org/10.1177/109467050031006 
  38. Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139-152. https://doi.org/10.2753/MTP1069-6679190202 
  39. Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43, 115-135. https://doi.org/10.1007/s11747-014-0403-8 
  40. Kim, H. W., Chan, H. C., & Gupta, S. (2007). Value-based adoption of mobile internet: an empirical investigation. Decision Support Systems, 43(1), 111-126. https://doi.org/10.1016/j.dss.2005.05.009 
  41. Larsen, T. J., Sorebo, A. M., & Sorebo, O. (2009). The role of task-technology fit as users' motivation to continue information system use. Computers in Human Behavior, 25(3), 778-784. https://doi.org/10.1016/j.chb.2009.02.006 
  42. Lee, H. J. & Lyu, J. (2016). Personal values as determinants of intentions to use self-service technology in retailing. Computers in Human Behavior, 60, 322-332. https://doi.org/10.1016/j.chb.2016.02.051 
  43. Lee, W., Castellanos, C., & Chris Choi, H. S. (2012). The effect of technology readiness on customers' attitudes toward self-service technology and its adoption; the empirical study of US airline self-service check-in kiosks. Journal of Travel & Tourism Marketing, 29(8), 731-743. https://doi.org/10.1080/10548408.2012.730934 
  44. Liao, H. & Chuang, A. (2004). A multilevel investigation of factors influencing employee service performance and customer outcomes. Academy of Management Journal, 47(1), 41-58. https://doi.org/10.5465/20159559 
  45. Lin, H. H. & Wang, Y. S. (2006). An examination of the determinants of customer loyalty in mobile commerce contexts. Information & Management, 43(3), 271-282. https://doi.org/10.1016/j.im.2005.08.001 
  46. Lin, J. S. C. & Hsieh, P. L. (2011). Assessing the self-service technology encounters: development and validation of SSTQUAL scale. Journal of Retailing, 87(2), 194-206. https://doi.org/10.1016/j.jretai.2011.02.006 
  47. Lin, W. S. (2012). Perceived fit and satisfaction on web learning performance: IS continuance intention and task-technology fit perspectives. International Journal of Human-Computer Studies, 70(7), 498-507. https://doi.org/10.1016/j.ijhcs.2012.01.006 
  48. Medberg, G. & Gronroos, C. (2020). Value-in-use and service quality: do customers see a difference?. Journal of Service Theory and Practice, 30(4/5), 507-529. https://doi.org/10.1108/JSTP-09-2019-0207 
  49. Meuter, M. L., Bitner, M. J., Ostrom, A. L., & Brown, S. W. (2005). Choosing among alternative service delivery modes: An investigation of customer trial of self-service technologies. Journal of Marketing, 69(2), 61-83. https://doi.org/10.1509/jmkg.69.2.61.60759 
  50. Meuter, M. L., Ostrom, A. L., Roundtree, R. I., & Bitner, M. J. (2000). Self-service technologies: understanding customer satisfaction with technology-based service encounters. Journal of Marketing, 64(3), 50-64. https://doi.org/10.1509/jmkg.64.3.50.18024
  51. Oh, H., Jeong, M., & Baloglu, S. (2013). Tourists' adoption of self-service technologies at resort hotels. Journal of Business Research, 66(6), 692-699. https://doi.org/10.1016/j.jbusres.2011.09.005 
  52. Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1985). A conceptual model of service quality and its implications for future research. Journal of Marketing, 49(4), 41-50. https://doi.org/10.1177/002224298504900403 
  53. Radomir, L. & Nistor, C. V. (2014). Comparing the original and the revised SSTQUAL scale among high-educated consumers in Romania. Procedia Economics and Finance, 15, 926-934. https://doi.org/10.1016/S2212-5671(14)00564-4 
  54. Turner, T. & Shockley, J. (2014). Creating shopper value: Co-creation roles, in-store self-service technology use, and value differentiation. Journal of Promotion Management, 20(3), 311-327. https://doi.org/10.1080/10496491.2014.885480 
  55. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 425-478. https://doi.org/10.2307/30036540 
  56. Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Quarterly, 157-178. https://doi.org/10.2307/41410412 
  57. Wang, X., Yuen, K. F., Wong, Y. D., & Teo, C. C. (2019). Consumer participation in last-mile logistics service: an investigation on cognitions and affects. International Journal of Physical Distribution & Logistics Management, 49(2), 217-238. https://doi.org/10.1108/IJPDLM-12-2017-0372 
  58. Zhao, X., Lynch Jr, J. G., & Chen, Q. (2010). Reconsidering Baron and Kenny: Myths and truths about mediation analysis. Journal of Consumer Research, 37(2), 197-206. https://doi.org/10.1086/651257 
  59. Zhou, T., Lu, Y., & Wang, B. (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in Human Behavior, 26(4), 760-767. https://doi.org/10.1016/j.chb.2010.01.013