DOI QR코드

DOI QR Code

미세조류 이미지 품질 성능 향상을 위한 최적 전처리방법 선정 연구

Evaluating optimal preprocessing method for separation of microalgae colonies into single cells for image quality

  • 김상엽 (세종대학교 건설환경공학과) ;
  • 맹승규 (세종대학교 건설환경공학과)
  • Sang Yeob Kim (Department of Civil and Environmental Engineering, Sejong University) ;
  • Sung Kyu Maeng (Department of Civil and Environmental Engineering, Sejong University)
  • 투고 : 2024.02.13
  • 심사 : 2024.03.27
  • 발행 : 2024.04.15

초록

In this study, various pre-treatment methods were evaluated for microalgae separation. These methods aimed to facilitate safe, rapid, and cost-effective online imaging for real-time observation and cell counting. As pre-treatment techniques, heating, chemical hydrolysis, heating combined with chemical hydrolysis, and sonication were employed. The effectiveness of these methods was evaluated in the context of online imaging quality through experimentation on cultivated microalgae (Chlorella vulgaris and Scenedesmus quadricauda). The chemical treatment method was found to be inappropriate for improving image acquisition. The heating pre-treatment method exhibited a drawback of prolonged cell dispersion time. Additionally, the heating combined with chemical hydrolysis method was confirmed to have the lowest dispersion effect for Chlorella vulgaris. Conversely, ultrasonication emerged as a promising technique for microalgae separation in terms of repeatability and reproducibility. This study suggests the potential for selecting optimal pre-treatment methods to effectively operate real-time online monitoring devices, paving the way for future research and applications in microalgae cultivation and imaging.

키워드

과제정보

본 연구는 환경부의 재원으로 한국환경산업기술원의 수생태계 건강성 확보 기술개발사업의 지원을 받아 연구되었습니다(2020003030006).

참고문헌

  1. Absher, M. (1973). Hemocytometer Counting, ACADEMIC PRESS, INC.
  2. Box, J.D. (1981). Enumeration of cell concentrations in suspensions of colonial freshwater microalgae, with particular reference to microcystis aeruginosa, Br. Phycol. J., 16, 153-164. https://doi.org/10.1080/00071618100650151
  3. Discart, V., Bilad, M.R., Vandamme, D., Foubert, I., Muylaert, K., and Vankelecom, I.F.J. (2013). Role of transparent exopolymeric particles in membrane fouling: Chlorella vulgaris broth filtration, Bioresour. Technol., 129, 18-25. https://doi.org/10.1016/j.biortech.2012.11.034
  4. Fan, J., Rao, L., Chiu, Y.T., and Lin, T.F. (2016). Impact of chlorine on the cell integrity and toxin release and degradation of colonial Microcystis, Water Res, 102, 394-404. https://doi.org/10.1016/j.watres.2016.06.053
  5. Humphries, S.E. and Widjaja, F. (1979). A simple method for separating cells of microcystis, Br. Phycol. J., 14, 313-316. https://doi.org/10.1080/00071617900650331
  6. Joung, S.H., Kim, C.J., Ahn, C.Y., Jang, K.Y., Boo, S.M., and Oh, H.M. (2006). Simple method for a cell count of the colonial cyanobacterium, Microcystis sp, J. Microbiol., 44, 562-565.
  7. Khan, W., Nam, J.Y., Byun, S.K., Kim, S.P., Han, C.S., and Kim, H.C. (2020). Emerging investigator series: quaternary treatment with algae-assisted oxidation for antibiotics removal and refractory organics degradation in livestock wastewater effluent, Environ. Sci. Water Res. Technol., 6, 3262-3275. https://doi.org/10.1039/D0EW00634C
  8. Li, M., Zhu, W., and Gao, L. (2014). Analysis of cell concentration, volume concentration, and colony size of Microcystis via laser particle analyzer, Environ Manage, 53(5): 947-958. https://doi.org/10.1007/s00267-014-0252-8
  9. Maqbool, T., Qin, Y., Ly, QV., Zhang, J., Li, C., Asif, MB., and Zhang, Z. (2020). Exploring the relative changes in dissolved organic matter for assessing the water quality of full-scale drinking water treatment plants using a fluorescence ratio approach, Water Res, 183, 116125.
  10. Mason, T.J., Lorimer, J.P., Bates, D.M., and Zhao, Y. (1994). Dosimetry in sonochemistry: the use of aqueous terephthalate ion as a fluorescence monitor, Ultrason. Sonochem, 1, S92-S95. https://doi.org/10.1016/1350-4177(94)90004-3
  11. McDonough, L.K., Santos, I.R., Andersen, M.S., O'Carroll, D.M., Rutlidge, H., Meredith, K., Oudone, P., Bridgeman, J., Gooddy, D.C., Sorensen, J.P.R., Lapworth, D.J., MacDonald, A.M., Ward, J., and Baker, A. (2020). Changes in global groundwater organic carbon driven by climate change and urbanization, Nat Commun, 11(1), 1279.
  12. Otalora, P., Guzman, J.L., Acien, F.G., Berenguel, M., and Reul, A. (2023). An artificial intelligence approach for identification of microalgae cultures, N Biotechno, 77, 58-67(2023). https://doi.org/10.1016/j.nbt.2023.07.003
  13. Peng, Y., Zhang, Z., Kong, Y., Li, Y., Zhou, Y.,Shi, X.X., and Shi, X.X. (2020). Effects of ultrasound on Microcystis aeruginosa cell destruction and release of intracellular organic matter, Ultrason. Sonochem, 63, 104909.
  14. Pivokonsky, M., Naceradska, J., Brabenec, T., Novotna, K., Baresova, M., and Janda, V. (2015). The impact of interactions between algal organic matter and humic substances on coagulation, Water Res, 84, 18-25. https://doi.org/10.1016/j.watres.2015.07.022
  15. Reynolds, C.S. and Jaworski, G.H.M. (1978). Enumeration of natural microcystis populations, Br. Phycol. J., 13, 269-277. https://doi.org/10.1080/00071617800650331
  16. Rokhina, E.V., Lens, P., and Virkutyte, J. (2009). Low-frequency ultrasound in biotechnology: state of the art, Trends Biotechnol., 27, 298-306.
  17. United Nations Educational, Scientific and Cultural Organization (2018). The United Nations World Water Development Report, Paris, France.
  18. Wang, X.X., Liu, B.M., Lu, M.F., Li, Y.P., Jiang, Y.Y., Zhao, M.X., Huang, Z.X., Pan, Y., Miao, H.F., and Ruan, W.Q. (2021). Characterization of algal organic matter as precursors for carbonaceous and nitrogenous disinfection byproducts formation: comparison with natural organic matter, J. Environ. Manag., 282, 111951.
  19. Yamamoto, Y. and Shiah, F.K. (2015). Effect of sonication on live and fixed cells of Microcystis aeruginosa, Plankton Benthos Res., 10(3), 163-166.
  20. Zamyadi, A., Henderson, R., Stuetz, R., Hofmann, R., Ho, L., and Newcombe, G. (2015). Fate of geosmin and 2-methylisoborneol in full-scale water treatment plants, Water Res., 83, 171-183. https://doi.org/10.1016/j.watres.2015.06.038
  21. Zhang, L., Yang, J., Liu, L., Wang, N., Sun, Y., Huang, Y., and Yang, Y. (2021). Simultaneous removal of colonial Microcystis and microcystins by protozoa grazing coupled with ultrasound treatment, J. Hazard. Mater., 420, 126616.