DOI QR코드

DOI QR Code

코발트 기반 프러시안블루 유사체를 이용한 수중 암모늄 이온의 선택적 흡착

Selective adsorption of ammonium ion via cobalt-based Prussian blue analogue

  • Tae Hwan Kim (Department of Environmental Engineering, Seoul National University of Science and Technology) ;
  • Narges Dehbashi Nia (Department of Environmental Engineering, Seoul National University of Science and Technology) ;
  • Yeo-Myeong Yun (Department of Environmental Engineering, Chungbuk National University) ;
  • Tae-Hyun Kim (Department of Environmental Engineering, Seoul National University of Science and Technology) ;
  • Yuhoon Hwang (Department of Environmental Engineering, Seoul National University of Science and Technology)
  • 투고 : 2024.02.03
  • 심사 : 2024.03.27
  • 발행 : 2024.04.15

초록

This study proposes the use of a cobalt-based Prussian blue analogue (Co-PBA; potassium cobalt hexacyanoferrate), as an adsorbent for the cost-effective recovery of aqueous ammonium ions. The characterization of Co-PBA involved various techniques, including Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, nitrogen adsorption-desorption analysis, and zeta potential. The prepared Co-PBA reached an adsorption equilibrium for ammonium ions within approximately 480 min, which involved both surface adsorption and subsequent diffusion into the interior. The isotherm experiment revealed a maximum adsorption capacity of 37.29 mg/g, with the Langmuir model indicating a predominance of chemical monolayer adsorption. Furthermore, the material consistently demonstrated adsorption efficiency across a range of pH conditions. Notably, adsorption was observed even when competing cations were present. Co-PBA emerges as a readily synthesized adsorbent, underscoring its efficacy in ammonium removal and selectivity toward ammonium.

키워드

과제정보

이 연구는 농촌진흥청 연구사업(PJ017005) 및 교육부 대학중점연구소지원사업 (2020R1A6A1A03042742)의 지원에 의해 수행되었습니다.

참고문헌

  1. Alshameri, A., He, H., Zhu, J., Xi, Y., Zhu, R., Ma, L., and Tao, Q. (2018). Adsorption of ammonium by different natural clay minerals: Characterization, kinetics and adsorption isotherms, Appl. Clay Sci., 159, 83-93. https://doi.org/10.1016/j.clay.2017.11.007
  2. Bicer, Y. and Dincer, I. (2018). Life cycle assessment of ammonia utilization in city transportation and power generation, J. Clean. Prod., 170, 1594-1601. https://doi.org/10.1016/j.jclepro.2017.09.243
  3. Blanchard., G. Maunaye, M. and Martin, G. (1984). Removalof heavy metals from waters by means of natural zeolites, Water Res., 18, 1501-1507. https://doi.org/10.1016/0043-1354(84)90124-6
  4. Cha, S. and Seo, Y.G. (2021). Groundwater quality characteristics of pollution concerned area in Gyeongnam using groundwater quality monitoring data, Clean Technol.. 27(2), 174-181.
  5. Chen, Q., Zhou, K., Chen Y., Wang, A., and Liu, F. (2017). Removal of ammonia from aqueous solutions by ligand exchange onto a Cu(ii)-loaded chelating resin: kinetics, equilibrium and thermodynamics, RSC Adv., 7, 12812-12823. https://doi.org/10.1039/C6RA28287C
  6. Demirhan, C.D., Tso, W.W., Powell, J.B. and Pistikopoulos, E.N. (2019). Sustainable ammonia production through process synthesis and global optimization, AICHE J., 65 (7), e16498.
  7. Freundlich, H. (1907). uber die Adsorption in Losungen, Z. Phys. Chem., 57, 385-490. https://doi.org/10.1515/zpch-1907-5723
  8. Georg, S., Puari, A.T., Hanantyo, M.P.G., Sleutels, T., Kuntke, P., ter Heijne, A. and Buisman, C.J.N. (2023). Low-energy ammonium recovery by a combined bio-electrochemical and electrochemical system, Chem. Eng. J., 454, 140196.
  9. Ghodbane, L., Nouri, N., Hamdaoui, O. and Chiha, M. (2008). Kinetic and equilibrium study for the sorption ofcadmium(II) ions from aqueous phase by eucalyptus bark, J. Hazard. Mater., 152, 148-158. https://doi.org/10.1016/j.jhazmat.2007.06.079
  10. Guaya, D., Valderrama, C., Farran, A., Armijos, C. and Cortina, J.L. (2015). Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite, Chem. Eng. J., 271, 204-213. https://doi.org/10.1016/j.cej.2015.03.003
  11. Hakim, M.A., Sevillano, K., Ewerts, H., van de Vossenberg, J. and van der Steen, N.P. (2023). Development of microalgal-bacterial aerobic granules for ammonium removal from wastewater in a photo sequencing batch reactor, Mater. Today: Proc. 77, 209-216. https://doi.org/10.1016/j.matpr.2022.11.263
  12. Han. B., Butterly, C., Zhang, W., He, J.-z. and Chen, D. (2021). Adsorbent materials for ammonium and ammonia removal: A review, J. Clean. Prod., 283, 124611.
  13. Heisler, J., Glibert, P.M., Burkholder, J.M., Anderson, D.M., Cochlan, W., Dennison, W.C., Dortch, Q., Gobler, C. J., Heil, C.A. and Humphries, E. (2008). Eutrophication and harmful algal blooms a scientific consensus. Harmful Algae, 8, 3-13. https://doi.org/10.1016/j.hal.2008.08.006
  14. Huang, J., Kankanamge, N.R., Chow, C., Welsh, D.T., Li, T. and Teasdale, P.R. (2018). Removing ammonium from water and wastewater using cost-effective adsorbents: A review, J. Environ. Sci., 63, 174-197. https://doi.org/10.1016/j.jes.2017.09.009
  15. Imchuen, N., Lubphoo, Y., Chyan, J-M., Padungthon, S., and Liao, C-H. (2016). Using cation exchange resin for ammonium removal as part of sequential process for nitrate reduction by nanoiron, Sustain. Environ. Res., 26(4), 156-160. https://doi.org/10.1016/j.serj.2016.01.002
  16. Jiang, C., Ni, J. and Jin, G.P. (2022). Magnetic potassium cobalt hexacyanoferrate nanocomposites for efficient adsorption of rubidium in solution, Sep. Purif. Technol., 296, 121383.
  17. Jiang, Y., Minami, K., Sakurai, K., Takahashi, A., Parajuli, D., Lei. Z., Zhang, Z. and Kawamoto, T. (2018). High-capacity and selective ammonium removal from water using sodium cobalt hexacyanoferrate, RSC Adv., 8(60), 34573-34581. https://doi.org/10.1039/C8RA07421F
  18. Kang, S., Lee, B., Ahn, K.H., Im, S., Kim, B., Kim, T.H., Hwang, Y. and Chae, S. (2023). Facile synthesis of copper-substituted Prussian blue analog immobilized ion exchange resins for high-performance ammonium recovery from wastewater: Adsorption kinetics, isotherms, and regeneration, Chem. Eng. J., 457, 141128.
  19. Kartal, B., Kuenen, J. v. and van Loosdrecht, M. (2010). Sewage treatment with anammox. Science, 328, 702-703. https://doi.org/10.1126/science.1185941
  20. Kido, G., Takasaki, M., Minami, K., Tanaka, H., Ogawa, H., Kawamoto, T. and Yoshino, K. (2017). Analysis of Cs-adsorption behavior using a column filled with microcapsule beads of potassium copper hexacyanoferrate, J. Nucl. Sci. Technol., 54(11), 1157-1162. https://doi.org/10.1080/00223131.2017.1364179
  21. Kiener, J., Limousy, L., Jeguirim, M., Le Meins, J.M., Hajjar-Garreau, S., Bigoin, G. and Ghimbeu, C.M. (2019). Activated carbon/transition metal (Ni, In, Cu) hexacyanoferrate nanocomposites for cesium adsorption, Mater., 12(8), 1253.
  22. Kim, M., Park, J.H., Lim, J.M., Kim, H. and Kim, S. (2021). Conventional and photoinduced radioactive 137Cs removal by adsorption on FeFe, CoFe, and NiFe Prussian blue analogues, Chem. Eng. J., 405, 126568.
  23. Kim, S.Y., Noh, Y.H., Kang, S.G., Kim, Y.B., Jang, W.J., Kim, D.J. and Yun, H.S. (2007). Ammonia Gas Removal by Bacillus subtilis IB101and Optimization of Culture Media, Korean J. Biotechnol. Bioeng., 22(3), 162-167.
  24. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40(9), 1361-1403. https://doi.org/10.1021/ja02242a004
  25. Lassaletta, L., Billen, G., Garnier, J., Bouwman, L., Velazquez, E., Mueller, N.D. and Gerber, J.S. (2016). Nitrogen use in the global food system: past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand, Environ. Res. Lett., 11(9), 095007.
  26. Lee, J.S., Choi, S.H., Yun, Y.U., Cho, Y.G., Lee, J.I. and An, N.H. (2023). "Monitoring of agricultural stream water quality change in Chungnam province", Proceeding of Korean Society of Soil Science and Fertilizer, 25-27 October, 2023, Republic of Korea.
  27. Lin, L., Lei, Z., Wang, L., Liu, X., Zhang, Y., Wan, C., Lee, D.-J. and Tay, J.H. (2013). Adsorption mechanisms of high-levels of ammonium onto natural and NaCl-modified zeolites, Sep. Purif. Technol., 103, 15-20. https://doi.org/10.1016/j.seppur.2012.10.005
  28. Lu, K., Song, B., Gao, X., Dai, H., Zhang, J. and Ma, H. (2016). High-energy cobalt hexacyanoferrate and carbon micro-spheres aqueous sodium-ion capacitors, J. Power Sources, 303, 347-353. https://doi.org/10.1016/j.jpowsour.2015.11.031
  29. Maghfiroh, M., Park, N., Chang, H., Lim, H.. and W. Kim. (2023). Ammonium removal and recovery from greywater using the combination of ion exchange and air stripping: The utilization of NaOH for the regeneration of natural zeolites, J. Water Process. Eng., 52 103581.
  30. Morris, S., Garcia-Cabellos, G., Ryan, D., Enright, D. and Enright, A-M. (2019) Low-cost physicochemical treatment for removal of ammonia, phosphate and nitrate contaminants from landfill leachate. J. Environ. Sci. Health A. 54, 1233-1244. https://doi.org/10.1080/10934529.2019.1633855
  31. Na, C.K. and Park, H.J. (2011). Applicability of Theoretical Adsorption Models for Studies on Adsorption Properties of Adsorbents(II), J. Korean Soc. Environ. Eng., 33(11), 804-811. https://doi.org/10.4491/KSEE.2011.33.11.804
  32. Nightingale Jr., E.R. (1959). Phenomenological Theory of Ion Solvation. Effective Radii of Hydrated Ions, J. Phys. Chem. A., 63(9), 1381-1387. https://doi.org/10.1021/j150579a011
  33. Parajuli, D., Noguchi, H., Takahashi, A., Tanaka, H. and Kawamoto, T. (2016). Prospective application of copper hexacyanoferrate for capturing dissolved ammonia, Ind. Eng. Chem., Res., 55, 6708-6715. https://doi.org/10.1021/acs.iecr.6b00748
  34. Pasta, M., Wessells, C.D., Huggins, R.A. and Cui, Y. (2012). A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage, Nat. Commun. 3, 1149.
  35. Roberts, T.L. (2009). The role of fertilizer in growing the world's food, Better Crop. Plant Food, 93, 12-15.
  36. Si̇msek, I. and Altas, L. (2022). A fast and effective method for ammonium removal: Emulsion Liquid Membrane, Process Saf. Environ. Prot., 167, 1-11. https://doi.org/10.1016/j.psep.2022.08.071
  37. Sutton, M.A., Oenema, O., Erisman, J.W., Leip, A., van Grinsven, H. and Winiwarter, W. (2011). Too much of a good thing, Nature, 472, 159-161. https://doi.org/10.1038/472159a
  38. Tanaka, H., Fujimoto, M., Minami, K., Takahashi, A., Parajuli, D., Hiwatari, T., Kawakami, M. and Kawamoto, T. (2021). Ammonium removal and recovery from sewage water using column-system packed highly selective ammonium adsorbent. Environ. Pollut., 284 117495.
  39. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J. and Sing, K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution, Pure Appl. Chem. 87(9-10), 1051-1069. https://doi.org/10.1515/pac-2014-1117
  40. Trung, N.D., Ping, N. and Dan, H.K. (2022). Synthesis, characterization, and the effectiveness of cobalt hexacyanoferrate nanoparticles in Cs+ adsorbent application, Nanotechnol. Environ. Eng., 7(4), 893-905. https://doi.org/10.1007/s41204-022-00265-x
  41. United Nations, Department of Economic and Social Affairs, Population Division (2015). World Population Prospects: The 2015 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP.241.
  42. van der Ham, C.J.M., Koper, M.T.M. and Hetterscheid, D.G.H. (2014). Challenges in reduction of dinitrogen by proton and electron transfer, Chem. Soc. Rev., 43(15), 5183-5191. https://doi.org/10.1039/C4CS00085D
  43. Wang, S. and Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment, Chem. Eng. J., 156(1), 11-24. https://doi.org/10.1016/j.cej.2009.10.029
  44. Wu, F.C., Tseng, R.L. and Juang, R.S. (2009). Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics, Chem. Eng. J., 153(1), 1-8. https://doi.org/10.1016/j.cej.2009.04.042
  45. Xue, S., Zhang, X., Ngo, H.H., Guo, W., Wen, H., Li, C., Zhang, Y. and Ma, C. (2019). Food waste based biochars for ammonia nitrogen removal from aqueous solutions, Bioresour. Technol., 292, 121927.
  46. Zhang, J., Zhou, J., Han, Y. and Zhang, X. (2014). Start-up and bacterial communities of single-stage nitrogen removal using anammox and partial nitritation (SNAP) for treatment of high strength ammonia wastewater. Bioresour. Technol., 169, 652-657. https://doi.org/10.1016/j.biortech.2014.07.042
  47. Zhang, Z. and Wang, J.G., Wei, B. (2017). Facile synthesis of mesoporous cobalt hexacyanoferrate nanocubes for high-performance supercapacitors, Nanomater., 7(8), 228
  48. Zhu, K., Fu, H., Zhang, J., Lv, X., Tang, J. and Xu, X. (2012). Studies on removal of NH4+-N from aqueous solution by using the activated carbons derived from rice husk, Biomass Bioenergy, 43, 18-25. https://doi.org/10.1016/j.biombioe.2012.04.005