DOI QR코드

DOI QR Code

Radionuclide concentrations in agricultural soil and lifetime cancer risk due to gamma radioactivity in district Swabi, KPK, Pakistan

  • Umair Azeem (Department of Physics, COMSATS University Islamabad) ;
  • Hannan Younis (Department of Physics, COMSATS University Islamabad) ;
  • Niamat ullah (Department of Physics, COMSATS University Islamabad) ;
  • Khurram Mehboob (Department of Nuclear Engineering, Faculty of Engineering, King Abdulaziz University) ;
  • Muhammad Ajaz (Department of Physics, Abdul Wali Khan University Mardan) ;
  • Mushtaq Ali (Department of Physics, Division of Science and Technology, University of Education) ;
  • Abdullah Hidayat (Department of Physics, Florida Atlantic University) ;
  • Wazir Muhammad (Department of Physics, Florida Atlantic University)
  • 투고 : 2023.05.13
  • 심사 : 2023.09.18
  • 발행 : 2024.01.25

초록

This study focuses on measuring the levels of naturally occurring radioactivity in the soil of Swabi, Khyber Pakhtunkhwa, Pakistan, as well as the associated health hazard. Thirty (30) soil samples were collected from various locations and analyzed for 226Ra, 232Th, and 40K radioactivity levels using a High Purity Germanium detector (HPGe) gamma-ray spectrometer with a photo-peak efficiency of approximately 52.3%. The average values obtained for these radionuclides are 35.6 ± 5.7 Bqkg-1, 47 ± 12.5 Bqkg-1, and 877 ± 153 Bqkg-1, respectively. The level of 232Th is slightly higher and 40K is 2.2 times higher than the internationally recommended limit of 30 Bqkg-1 and 400 Bqkg-1, respectively. Various parameters were calculated based on the results obtained, including Radium Equivalent (Raeq), External Hazard (Hex), Absorbed Dose Rate (D), Annual Gonadal Equivalent Dose (AGDE), Annual Effective Dose Rate, and Excess Lifetime Cancer Risk (ELCR), which are 170.3 ± 24 Bqkg-1, 0.46 ± 0.06 Bqkg-1, 81.4 ± 2.04 nGy h-1, 582 ± 78.08 µSvy-1, 99.8 ± 13.5 µSv Gy-1, and 0.349 ± 0.04, respectively. These values are below the limits recommended by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) in 2002. This study highlights the potential radiation threats associated with natural radioactivity levels in the soil of Swabi and provides valuable information for public health and safety.

키워드

과제정보

This research work was funded by Institutional Fund Projects Under grant no. (IFPIP: 34-135-1443). The authors gratefully acknowledge the technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

참고문헌

  1. R. Ravisankar, et al., Natural Radioactivity in Soil Samples of Yelagiri Hills, Tamil Nadu, India and the Associated Radiation Hazards, vol. 81, 2012, pp. 1789-1795.
  2. C. Shahzadi, et al., Study of Gross Alpha, Gross Beta and Natural Radioactivity in Soil Samples of District Muzaffarabad, vol. 102, 2022, pp. 5549-5566.
  3. A. Mahur, et al., Measurement of Natural Radioactivity and Radon Exhalation Rate from Rock Samples of Jaduguda Uranium Mines and its Radiological Implications, vol. 266, 2008, pp. 1591-1597.
  4. F. Ribeiro, et al., Natural radioactivity in soils of the state of Rio de Janeiro (Brazil): radiological characterization and relationships to geological formation, soil types and soil properties 182 (2018) 34-43.
  5. W. Muhammad, et al., An overview of radioactivity measurement studies in Pakistan, Rev. Environ. Health 34 (2019) 141-152. https://doi.org/10.1515/reveh-2018-0058
  6. S.L. Simon, A. Bouville, C.E.J.A.S. Land, Fallout from Nuclear Weapons Tests and Cancer Risks: Exposures 50 Years Ago Still Have Health Implications Today that Will Continue into the Future, vol. 94, 2006, pp. 48-57.
  7. K. Abumurad, M.J. R.m. Al-Tamimi, Emanation Power of Radon and its Concentration in Soil and Rocks, vol. 34, 2001, pp. 423-426. https://doi.org/10.1016/S1350-4487(01)00199-8
  8. T. Ramachandran, Background Radiation, People and the Environment, 2011.
  9. R. Ravisankar, et al., Measurement of Natural Radioactivity in Building Materials of Namakkal, Tamil Nadu, India Using Gamma-Ray Spectrometry, vol. 70, 2012, pp. 699-704.
  10. S. Lewicka, B. Piotrowska, A. Lukaszek-Chmielewska, T. Drzymala, P. Health, Assessment of Natural Radioactivity in Cements Used as Building Materials in Poland, vol. 19, 2022, 11695. https://doi.org/10.3390/ijerph191811695
  11. H. Younis, et al., Radiometric Examination of Fertilizers and Assessment of Their Health Hazards, Commonly Used in Pakistan, Nuclear Engineering and Technology, 2023.
  12. S. Kansal, R. Mehra, Evaluation and Analysis of 226Ra, 232Th and 40K and Radon Exhalation Rate in the Soil Samples for Health Risk Assessment, vol. 10, 2015, pp. 1-13. https://doi.org/10.1504/IJLR.2015.071747
  13. F. Mireles, et al., Natural soil gamma radioactivity levels and resultant population dose in the cities of Zacatecas and Guadalupe, Zacatecas, Mexico. 84 (2003) 368-372.
  14. S. Baim, et al., Precision assessment and radiation safety for dual-energy X-ray absorptiometry: position paper of the, International Society for Clinical Densitometry 8 (2005) 371-378.
  15. A. Rani, S.J.A.E. Singh, Natural radioactivity levels in soil samples from some areas of Himachal Pradesh, India using γ-ray spectrometry 39 (2005) 6306-6314.
  16. J. Singh, H. Singh, S. Singh, B. Bajwa, R. Sonkawade, Comparative Study of Natural Radioactivity Levels in Soil Samples from the Upper Siwaliks and Punjab, India Using Gamma-Ray Spectrometry, vol. 100, 2009, pp. 94-98.
  17. D. Shahbazi-Gahrouei, M. Gholami, S.J. A.b. r. Setayandeh, A Review on Natural Background Radiation, 2013, p. 2.
  18. M. Pownceby, C.J.O.G.R. Johnson, Geometallurgy of Australian Uranium Deposits, vol. 56, 2014, pp. 25-44. https://doi.org/10.1016/j.oregeorev.2013.07.001
  19. P. Giusquiani, M. Pagliai, G. Gigliotti, D. Businelli, A. Benetti, Urban Waste Compost: Effects on Physical, Chemical, and Biochemical Soil Properties. Report No. 0047-2425, Wiley Online Library, 1995.
  20. S. Trapmann, et al., The New International Standard ISO 17034: General Requirements for the Competence of Reference Material Producers, vol. 22, 2017, pp. 381-387. https://doi.org/10.1007/s00769-017-1285-5
  21. N.M. Moghazy, et al., Natural Radioactivity, Radiological Hazard and Petrographical Studies on Aswan Granites Used as Building Materials in Egypt, vol. 11, 2021, p. 6471.
  22. A. Alharbi, A.J.L.S.J. El-Taher, A Study on Transfer Factors of Radionuclides from Soil to Plant., vol. 10, 2013, pp. 532-539.
  23. A. Durusoy, M. Yildirim, A. Sciences, Determination of radioactivity concentrations in soil samples and dose assessment for Rize Province, Turkey 10 (2017) 348-352.
  24. I. Oborn, et al., Critical Aspects of Potassium Management in Agricultural Systems, vol. 21, 2005, pp. 102-112.
  25. R.P.J.A. Dick, Ecosystems & Environment. A Review: Long-Term Effects of Agricultural Systems on Soil Biochemical and Microbial Parameters, vol. 40, 1992, pp. 25-36. https://doi.org/10.1016/0167-8809(92)90081-L
  26. D.O. Carter, D. Yellowlees, M.J.N. Tibbett, Cadaver decomposition in terrestrial ecosystems 94 (2007) 12-24.
  27. A. Angjeleska, et al., Natural Radioactivity Levels and Estimation of Radiation Exposure in Agricultural Soils from Skopje City Region, vol. 39, 2020, pp. 77-87. https://doi.org/10.20450/mjcce.2020.1904
  28. N. Chatterjee, G.C.J.E. Walker, m. mutagenesis, Mechanisms of DNA damage, repair, and mutagenesis 58 (2017) 235-263.
  29. A.T. Ramli, A.W.M. Hussein, A.K. Wood, Environmental 238U and 232Th concentration measurements in an area of high level natural background radiation at Palong, Johor, Malaysia 80 (2005) 287-304.
  30. E. Agbalagba, G. Avwiri, Y. Chad-Umoreh, γ-Spectroscopy measurement of natural radioactivity and assessment of radiation hazard indices in soil samples from oil fields environment of Delta State, Nigeria 109 (2012) 64-70.
  31. B. Cetin, B. Canimkurbey, M. Gul, Boraboy Lake from Amasya Turkey: Natural Radioactivity and Heavy Metal Content in Water, Sediment, and Soil, vol. 15, 2022, p. 513.
  32. K. Babai, S. Poongothai, J.J. R.p. d. Punniyakotti, Determination of Environmental Radioactivity (238U, 232Th and 40K) and Indoor Natural Background Radiation Level in Chennai City, vol. 153, Tamilnadu State), India, 2013, pp. 457-466.
  33. S.Y. Ratnayake, Assessment of the Fate and Behavior of Naturally Occurring Thorium and Uranium in the Environment of Central Sri Lanka, 2021.
  34. J. Harrison, Lung cancer risk and effective dose coefficients for radon, UNSCEAR review and ICRP conclusions 41 (2021) 433.
  35. Y. Raghu, R. Ravisankar, A. Chandrasekaran, P. Vijayagopal, B. Venkatraman, Assessment of Natural Radioactivity and Radiological Hazards in Building Materials Used in the Tiruvannamalai District, Tamilnadu, India, Using a Statistical Approach, vol. 11, 2017, pp. 523-533.
  36. T.-L. Tsai, C.-C. Lin, T.-W. Wang, T.-C. Chu, Radioactivity Concentrations and Dose Assessment for Soil Samples Around Nuclear Power Plant IV in Taiwan, vol. 28, 2008, p. 347.
  37. A. El-Taher, Assessment of natural radioactivity levels and radiation hazards for building materials used in Qassim area, Saudi Arab. (Quarterly Forecast Rep.) 57 (2012) 726-735.
  38. A. Mishra, R.J.H.P. Khanal, Outdoor Effective Dose and Associated Health Risk in the Premises of Tribhuvan University In-Situ Gamma Ray Spectrometry, vol. 8, 2019, pp. 47-52.
  39. C.J.J.C.D. Turkmen, Safety of Radiosynovectomy in Hemophilic Synovitis: it Is Time to Re-evaluate, vol. 1, 2009, pp. 29-36.
  40. H. El-Gamal, E. Sidique, M. El-Haddad, M.E.-A. Farid, Assessment of the Natural Radioactivity and Radiological Hazards in Granites of Mueilha Area (South Eastern Desert, Egypt), vol. 77, 2018, pp. 1-14.
  41. S. Solak, et al., Evaluation of potential exposure risks of natural radioactivity levels emitted from building materials used in Adana, Turkey, Indoor Built Environ. 23 (2014) 594-602. https://doi.org/10.1177/1420326X12448075