DOI QR코드

DOI QR Code

Design and simulation of 500 MHz single cell superconducting RF cavity for SILF

  • Yanbing Sun (Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University) ;
  • Wei Ma (Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University) ;
  • Nan Yuan (Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University) ;
  • Yulin Ge (Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University) ;
  • Zhen Yang (Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University) ;
  • Liping Zou (Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University) ;
  • Liang Lu (Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University)
  • 투고 : 2023.07.11
  • 심사 : 2023.09.16
  • 발행 : 2024.01.25

초록

Shenzhen Innovation Light source Facility (SILF) is a 3.0 GeV fourth generation diffraction limited synchrotron light source currently under construction in Shenzhen. The SILF storage ring is proposed to use two 500 MHz single cell superconducting radio frequency (SRF) cavities to provide 2.4 MV RF voltage. In this study, we examined the geometric structure of mature CESR superconducting cavities and adopted a beam-pipe-type extraction scheme for high-order modes (HOM). One of the objectives of SRF cavity design and optimization in this study is to reduce Ep/Eacc and Bp/Eacc as much as possible to reduce power loss and ensure stable operation of the cavity. To reduce the risk of beam instability and thermal breakdown, the HOM and Multipacting (MP) are simulated. Moreover, the mechanical properties of the cavity are analyzed, including frequency sensitivity from pressure of liquid helium (LHe), stress, tuning, Lorentz force detuning (LFD), the microphone effect, and buckling. By comprehensive design and optimization of 500 MHz single-cell SRF cavities, a superconducting cavity for SILF storage ring was developed. This paper will detailed present the design and simulation.

키워드

과제정보

We thank the National Natural Science Foundation of China (No. 12175319, 12175320) and the Natural Science Foundation of Guangdong Province, China (grants No. 2022A1515010280) for providing financial support to this study.

참고문헌

  1. A. Hofmann, The Physics of Synchrotron Radiation, the Physics of Synchrotron Radiation, Cambridge University Press, Cambridge, England, 2004.
  2. E. Wilson, et al., An introduction to particle accelerators, Phys. Today 55 (8) (2002), 52-52.
  3. S.M. Bak, et al., In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research, NPG Asia Mater. 10 (2018) 563-580. https://doi.org/10.1038/s41427-018-0056-z
  4. I. Lobach, et al., Single electron in a storage ring: a probe into the fundamental properties of synchrotron radiation and a powerful diagnostic tool, J. Instrum. 17 (2022), P02014, 02.
  5. D. Einfeld, et al., The synchrotron light source ROSY, Nucl. Instrum. Methods B. 89 (1) (1994) 74-78. https://doi.org/10.1016/0168-583X(94)95149-7
  6. D. Einfeld, Synchrotron Light Sources, Status and New Projects, Springer Netherlands, Dordrecht, 2007, pp. 3-20.
  7. T. He, et al., Physics design of the Shenzhen innovation light source storage ring, J. Instrum. 18 (2023), P05037, 05.
  8. N. Yuan, et al., RF design and frequency sensitivity analysis of a 1500 MHz passive third harmonic superconducting cavity for the SILF, J. Instrum. 18 (2023), P04019, 04.
  9. C. Lu, et al., Design and simulation of a new type of 500 MHz single-cell superconducting RF cavity, Chin. Phys. C 36 (2012) 447-451, 05.
  10. Y. Liu, et al., R&D of BEPCII 500 MHz superconducting cavity, Sci. China, Ser. A G. 54 (2) (2011) 178-181. https://doi.org/10.1007/s11433-011-4594-4
  11. S. Belomestnykh, Superconducting radio-frequency systems for high-β particle accelerators, Rev. Accel. Sci. Technol. 5 (2012) 147-184. https://doi.org/10.1142/S179362681230006X
  12. V. Shemelin, et al., Optimal cell for TESLA superconducting structure, Nucl. Instrum. Methods A. 496 (2003) 1-7. https://doi.org/10.1016/S0168-9002(02)01620-0
  13. M. Karliner, et al., On the problem of comparison of accelerating structures operated by stored energy (in Russian), Preprint INP (1986) 86-146. Novosibirsk.
  14. P.N. Ostroumov, et al., Ellipsoidal superconducting RF cavities for FRIB energy upgrade, Nucl. Instrum. Methods A. 888 (2018) 53-63. https://doi.org/10.1016/j.nima.2018.01.001
  15. K. Akai, et al., RF systems for the KEK B-Factory, Nucl. Instrum. Methods A. 499 (1) (2003) 45-65. https://doi.org/10.1016/S0168-9002(02)01773-4
  16. D.M. Dykes, et al., Superconducting RF systems for light sources?, Vienna, Austria, in: Proceedings of EPAC 2000, 2000. EPAC 2034.
  17. H. Padamsee, et al., Design challenges for high current storage rings, Part, Accelerator 40 (SRF-911111-09) (1991) 17-41.
  18. CST Studio Suite, Ver. 2021, CST AG, Darmstadt, Germany, 2021. https://www.3ds.com/products-services/simulia/products/cst-studio-suite/.
  19. A. Roy, et al., RF design of a single cell superconducting ellipsoidal cavity with input coupler, in: 12th Workshop on RF Superconductivity, Cornell University, USA, 2005.
  20. J. Kirchgessner, The use of superconducting RF for high current applications, Part. Accel. 46 (1993) 151-162. CLNS-1247.
  21. R.F. Parodi, Multipacting, Ebeltoft, Denmark, in: Proceedings of the CAS - CERN Accelerator School: RF for Accelerators, vol. 7, 2011, pp. 447-458. arXiv: 1112.2176.
  22. S. Belomestnykh, V. Shemelin, High-ß cavity design - a tutorial, in: 12th Int. Conf. RF Superconductivity, 2005, pp. 2-19.
  23. V. Shemelin, S. Belomestnykh, Multipactor in Accelerating Cavities, Springer Nature, Switzerland AG, 2020, https://doi.org/10.1007/978-3-030-48198-8.
  24. V. Shemelin, Multipactor in crossed rf fields on the cavity equator. Phys. Rev. Accel. Beams. 16 (2013), 012002, 01.
  25. W. Ma, et al., Development and beam commissioning of a continuous-wave fourvane heavy ion radio-frequency quadrupole accelerator based on stable operation, Nucl. Instrum. Methods A. 949 (2019), 162824.
  26. Z. Gao, et al., Design of a 200-MHz continuous-wave radio frequency quadrupole accelerator for boron neutron capture therapy, Nucl. Sci. Tech. 32 (3) (2021) 10.
  27. S.A. Pande, M. Jensen, Multipactor studies for DIAMOND storage ring cavities, Proceedings of SRF2011, Chicago, IL USA. THPO010.
  28. H. Zheng, et al., RF design of 650-MHz 2-cell cavity for CEPC, Nucl. Sci. Tech. 30 (10) (2019) 155.
  29. C. Pagani, SRF Activities at INFN Milano-LASA, the 10th Workshop on RF Superconductivity, 2001 (Tsukuba, Japan).
  30. L. Guo, et al., Multipacting suppression of the HOM-damped 166.6-MHz β=1 quarter-wave superconducting cavities at HEPS, J. Instrum. 16 (11) (2021), P11003.
  31. Y. Shashkov, et al., Comparison of higher order modes damping techniques for 800 MHz single cell superconducting cavities☆, Nucl. Instrum. Methods A. 767 (2014) 271-280. https://doi.org/10.1016/j.nima.2014.09.011
  32. J. Zhu, et al., Optimal design and HOM damping of a 500 MHz 5-cell copper cavity for SAPS, J. Instrum. 17 (2022), P08013, 08.
  33. A.C. Loeza, et al., Design of Electron and Ion Crabbing Cavities for an Electron-Ion Collider. These Proceedings, 2012. www.niowave.com.
  34. R. Rimmer, et al., Cavity and Cryomodule Developements for EIC, Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States), 2023.
  35. M. Mario, Material properties for engineering analyses of SRF cavities, Fermilab Specification (2011), 5500.000-ES-371110.
  36. ASME, ASME Boiler and Pressure Vessel Code Section II Materials, ASME, New York, NY, USA, 2010.
  37. X. Zhang, et al., The mechanical design, fabrication and tests of a 166.6 MHz quarter-wave beta= 1 proof-of-principle superconducting cavity for HEPS. Nucl. Instrum. Meth. A. 947 (2019), 162770.
  38. H. Zheng, et al., Design optimization of a mechanically improved 499.8-MHz single-cell superconducting cavity for HEPS, IEEE Trans. Appl. Supercond. 31 (2) (2020), 3500109.
  39. Y. Tang, et al., Thermal analysis for fundamental power coupler of HALF 499.8 MHz superconducting cavity, J. Instrum. 16 (2021), T06010, 06.